
Jump start your RISCV project with
OpenHW

Mike Thompson (OpenHW Group) Jingliang Wang (Futurewei Technologies)
Steve Richmond (Silicon Labs) Lee Moore (Imperas Software Ltd.)

David McConnell & Greg Tumbush (EM Microelectronic-US)

Agenda

• OpenHW Verification Environment
• Reference Model
• Step and Compare
• Conclusion
• Future Work
• Questions

OpenHW Verification Environment
• Provides a robust, comprehensive simulation environment for the

CV32E40P RV32IMCZifencei processor
• Freely available on github at openhwgroup/core-v-verif
• Industrial-grade verification

• UVM environment
• Runs on any commercial SystemVerilog-compatible simulator
• Complete code coverage
• Well-defined comprehensive functional coverage
• Open and complete verification plans

SV - DPI Wrapper

CORE-V-VERIF Testbench

© OpenHW Group

corev-dv

Random
Instruction
Generator CV32E40P RTL

SVA Re-use Assertions
from

Design teamGCC
compile elf2hex

mm_ram

dp_ram

vp

Scoreboard

Verification Plan is the spec
for functional coverage model

Toolchain invoked
by Makefile

Same test-program
on core and ISS

SV - DPI Wrapper

Functional
Coverage

ScoreboardDebug
Agent

Interrupt
AgentMost test-runs use

“corev-dv”, extended
from riscv-dv

Compare all CSRs,
GPRs and PC

Reference Model

Async Debug
and Interrupts

Environment
• SystemVerilog Components

• tracer: Reports instructions for
checking and register writebacks

• step_and_compare: Manages the
ISS and checks functionality

• mmram: OBI I/D port stimulus and
virtual peripherals

• interrupt_assert: Properties for
interrupt coverage/checking

• debug_assert: Properties for
debug coverage/checking

• UVM Agents
• obi: Monitor/functional coverage for

OBI
• debug: Random stimulus of external

debug requests
• interrupt: Random stimulus for

external interrupts
• rv32isa_covg

• Coverage of all RV32IMCZifencei
instructions

• Includes interrupt and debug
requests with instruction execution

Tests
• Directed and random tests

supported
• Directed/custom tests

• Assembly or C
• BSP package provides test utilities

• Random tests
• Built on Google riscv-dv to generate

random tests
• Fully randomize external iterations

during random test
• Interrupt, debug requests
• OBI I/D RAM stalls

• YAML test specifications
• Control simulation

• Run-time plusargs
• Control random test generation

• Knobs to instruction set generator

corev-dv
• Customization layer based on Google riscv-dv
• riscv-dv is included via a git clone by make when generating a test
• OpenHW corev-dv extensions

• Custom configuration for cv32e40p
• M-mode register fields for cv32e40p interrupts
• Nested interrupt support
• Debug ROM stack for more robust debug tests
• M-mode CSR stimulus with interrupts
• Numerous directed streams to achieve better ISA coverage, especially around

jumps and branches

© OpenHW Group

Reference Model

SV - DPI Wrapper

Scoreboard

SV - DPI Wrapper

Functional
Coverage

ScoreboardDebug
Agent

Interrupt
Agent

Reference Model

Reference Model Standard Config

© OpenHW Group

• Reference model is central to the DV plan and overall verification
quality
• Imperas reference model covers the envelope of the full RISC-V

specification
• OVP model is a binary shared object of a RISC-V CPU model
• Encapsulated into a SystemVerilog module, using SystemVerilog DPI
• Instanced in SystemVerilog design or testbench as a module
• Control interface
• State InterfaceSV - DPI Wrapper

Scoreboard

SV - DPI Wrapper

Functional
Coverage

ScoreboardDebug
Agent

Interrupt
Agent

Reference Model

© OpenHW Group

• Custom Extensions
• Control & State Registers (CSR)
• Instructions

• Example: Debug Specification
• Highly configurable with options, and customizable
• Many possible subset selections.
• User configurable

Reference Model Extended Config

SV - DPI Wrapper

Scoreboard

SV - DPI Wrapper

Functional
Coverage

ScoreboardDebug
Agent

Interrupt
Agent

Custom
ExtReference Model

© OpenHW Group

• Instruction execution continued to retirement
– State update

• Instruction execution discontinued by exception
– Synchronous
• Misaligned load/store
• Illegal instruction (privileged, unsupported)

– Asynchronous
• Interrupts
• Debug-Request

• Instruction execution to halt
– WFI

Reference Model
Instruction Execution

SV - DPI Wrapper

Scoreboard

SV - DPI Wrapper

Functional
Coverage

ScoreboardDebug
Agent

Interrupt
Agent

Custom
ExtReference Model

© OpenHW Group

Reference Model
Instruction Execution/Flow

SV - DPI Wrapper

Scoreboard

SV - DPI Wrapper

Functional
Coverage

ScoreboardDebug
Agent

Interrupt
Agent

Custom
ExtReference Model

Reference Model Encapsulation

BIU (Fetch, Load/Store)

Async Events

Code Data

Interrupts Debug

S
t
a
t
e

GPR
CSR

MODE
DEBUGSV - DPI Wrapper

Custom
ExtReference Model

Reference Model
Debug/Analysis Capabilities

RTL Debug

S/W Debug

S/W Trace

S/W Analysis

BIU (Fetch, Load/Store)

Async Events

Code Data

Interrupts Debug

S
t
a
t
e

GPR
CSR

MODE
DEBUGSV - DPI Wrapper

Custom
ExtReference Model

Step and Compare

• Imperas Reference Model (RM) used in step-and-compare mode
• RTL and RM in sync at an instruction level
• Invaluable for debug
• No modifications to RTL
• Testbench keeps RTL and RM in sync
• Tracer flags testbench that RTL completed an instruction

Step and Compare

• Implemented as a 4-state
State Machine

RESET

STEP_RTL

STEP_OVP COMPARE

Step RTL=0
Step RM=1

Step RTL=0
Step RM=0

Step RTL=1
Step RM=0

Step RTL=1
Step RM=0

Step and Compare Example

converted
by tracer

12c: csrw mepc, a2
130: jal ra, 961c

12c: csrrw x0, x12, 0x341
130: jal x1, 38124

Compare

• Compare is done in the COMPARE state
• PC
• GPRs
• CSRs

GPR Compare
Issue: Instructions using the EX WB stage update GPR
after the RTL retire signal

lw x8, 24(x2)
completes

x8 updates

Compare
fails

GPR Compare
Fix: Use tracer queue insn_regs_write
• Contains address/data of any GPR updated in EX WB stage

lw x8, 24(x2)
completes

insn_regs_write[0].address=8
Insn_regs_write[0].data=0x364C

Compare
succeeds

CSR Compare

foreach(iss_wrap.cpu.CSR[index]) begin
csr_val = 0;
case (index)
"misa" : csr_val = `CV32E40P_CORE.cs_registers_i.MISA_VALUE;
"mie" : csr_val = `CV32E40P_CORE.cs_registers_i.mie_q;
…

endcase
check_32bit(.compared(index),

.expected(iss_wrap.cpu.CSR[index]),

.actual(csr_val));

• At RTL Retire CSRs have updated and are probed directly
• At RM Retire predicted CSRs written to array CSR
• Array CSR traversed at compare event

Conclusion

• CV32E40P RISCV CPU is fully verified and open source
• Functional and Code Coverage is 100%
• All tests pass

Future Work

• CVA6
• CV32E4
• CV32E2
• Common Tracer interface for RTL and RM, similar to RVFI
• Google riscv-dv generator as a UVM component

GET INVOLVED!

Questions?

