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Safety and Security in 
Embedded Systems
• More	processors	per	SoC	is	being	driven	by	demand	for	bigger,	faster,	more	
efficient	systems

• Initial	architectures	just	consolidated	smaller	SoCs	into	a	larger	SoC	with	
minimal	sharing	of	resources

• This	satisfies	performance	and	domain	isolation	(for	safety	and	security	critical	uses)	
requirements	

• Power	consumption	becomes	a	real	issue,	in	terms	of	reliability	and	cooling	costs
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Mixed Criticality Systems

• Definition:		an	embedded	system	comprised	of	hardware,	operating	
system	(OS),	middleware	services	and	application	software	with	
multiple	levels	of	criticality

• Mixed	criticality	systems	are	seen	in	multiple	market	segments	
including	automotive,	avionics,	industrial	controls,	medical	electronics

• The	architecture	of	many	of	these	systems	uses	the	OS	and/or	a	
hypervisor	to	realize	partitioning	between	the	domains	with	differing	
levels	of	criticality

• In	this	situation,	the	OS	or	hypervisor	implementing	the	partitioning	needs	to	
be	certified	at	the	same	criticality	level	as	the	most	critical	application
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SAFEPOWER Reference 
Architecture

26-Feb-20©	2020	Imperas	Software	Ltd.Page	8

• SLP:	Static	Low-Power	block
• PSI:		Power	Services	Interface
• Hypervisor	partitions	for	Power	
Monitoring	App,	User	App	#1,	User	
App	#2,	…

• Tile	“partitions”	for	Bare-metal	Tile	
#1,	Bare-metal	Tile	#2,	…



SAFEPOWER Reference 
Architecture
• Tile-based	architecture
• Connected	via	time-triggered	Network	on	Chip	(NoC)
• Tiles	are	managed	by	a	Type-1	hypervisor

• Allows	for	an	arbitrary	amount	of	user	partitions
• Low-Power	Monitoring	Partition:		Special	partition	on	the	hypervisor	for	monitoring	and	controlling	power	management	services
• Includes	time-triggered	task	management

• Bare-metal	tiles	are	not	directly	managed	by	the	hypervisor
• Connected	to	the	time-triggered	NoC
• Implements	a	light	version	of	the	hypervisor	application	interface
• Time-triggered	behavior	is	executed	based	on	a	pre-computed	communication	schedule	that	triggers	the	message	injection	times

• Achieves	both	the	spatial	isolation	and	temporal	independence	required	in	safety	standards	such	as	IEC-61508
• Time	triggered	architecture	provides	deterministic	scheduling	of	software	tasks,	with	Worst	Case	Execution	Time	(WCET)	
analysis	supporting	the	achievement	of	timing	requirements
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Imperas Environment for Embedded 
Software Development, Debug & Test
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Virtual Platform
• Models

• Existing	models	from	the	Open	Virtual	Platforms	(OVP)	Library	used,	if	available
• Models	of	Arm,	MicroBlaze	processors
• Various	non-processor	models

• New	models	built	using	OVP	APIs	as	required
• Network	Interface	(NI)
• Various	peripheral	components
• Hierarchical,	parameterized	platform

• Models	are	open	source	(http://www.ovpworld.org)	
• Simulator	product	is	Imperas	M*SDK

• Instruction	accurate	simulator	engine	(~250	million	instructions	per	second	performance)
• MultiProcessor	Debugger	(MPD)	for	platform-centric	debug
• Verification,	Analysis	and	Profiling	(VAP)	tools
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SafePower Platform
• Objective	was	to	build	the	platform	as	both	real	hardware	and	a	virtual	platform
• Based	upon	the	Xilinx	Zynq	7000	board
• Processing	System	(PS)

• Static	hardware	block	including	ARM	Cortex-A9MPx2	processor
• Programmable	Logic	(PL)

• Define	any	components	and	interconnects
• MicroBlaze processors
• Network-on-Chip	nodes	and	interconnect
• Memory

• Can	create	and	dynamically	load	any	PL	definition
• Interconnect

• Fixed	Connectivity	between	PS	and	PL
• Address-mapped	data	and	GPIO

• Power	Control	and	Monitor
• Power	monitoring	devices

• Set	voltages	and	obtain	feedback	of	current	values
• Clock	control

• Dynamically	change	processor	clock	frequency	– Dynamic	Voltage	and	Frequency	Scaling	(DVFS)
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Hypervisor is XtratuM from 
FentISS
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• Supports	time-triggered	task	management
• Supports	special	partitions	for	system-level	apps	such	as	power	monitoring	and	management



Xilinx Zynq Virtual Platform 
Hierarchy
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SafePower Virtual Platform NoC
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Virtual Platform Challenges

1) How	to	model	DVFS	
2) Fault	injection	testing	environment
3) Support	for	time-triggered	system
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1) DVFS Implementation Uses
Power Intercept Library
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Virtual Power Sensor

• Power	Sensor	is represented by an	
intercepted I²C	interface

• Power	Model	gets new voltage values and	
returns power	values

• That	means:	Next	to	the	frequency
configuration the	application is able to	
configure the	voltages and	to	request the	
present power	values
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Executing Linux in VP with 
Attached Power Model
• Virtual	Platform	(VP)	executes	Linux	and	Power	Model	recognizes	changes:

• Core	frequencies	are	reconfigured	to	333MHz
• RAM	frequency	is	configured	to	533MHz

• Power	Model	reconfigures	MIPS	rate	of	both	cores

Core Frequencies 

RAM Frequency 

Linux Console and Simulator output
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2) Fault Injection
• Fault	injection	framework	should

• Include	different	faults	and	fault	campaigns
• Apply	simulation	time	to	trigger	injection	of	faults

• Faults	implemented
• Memory	corruption
• Memory	monitoring	and	corruption
• GPIO	corruption
• Switch	partition	scheduler
• Reset	CPUx
• Uncontrolled	interrupt
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Fault Injection Execution Modes

• Intercept	library
• Intercept	library	+	configuration	file
• Sequential	execution	of	faults
• HTML	based	user	interface

Simulation Time

Instruction Count

Faults

End Simulation
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3) Simulation:  Time-Triggered
Scheduling
• Default	simulation	scheduler

• Round-robin	scheduling	of	processor	execution
• Functionally	correct	but	limited	timing	reference

• SAFEPOWER	is	a	time-triggered	system
• Timing	synchronisation	defined	statically
• Time	triggers	do	not	align	with	simulation	quanta

• Solution:		Develop	time-triggered	scheduler
• Applications	are	executed	until	reach	next	event
• Execution	scheduled	to	complete	“work”

• Detect	points	in	application	for	synchronisation	events

Time-Triggered	Scheduling

Quantum-Based	Scheduling

P0

P1
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Evaluation

• Railway	and	avionics	use	cases	implemented
• Evaluate	the	functionality	and	timing	with	and	without	low	power	techniques	
on	both	the	virtual	platform	and	hardware	platform

• Objectives
• Demonstrate	that	the	software	components	interact	correctly	with	each	other	and	with	the	hardware
• Verify	that	the	entire	system	complies	with	the	requirements	– functional	and	extra-functional,	also	
when	including	low	power	techniques	– of	the	use	case	specification

• Show	that	power	savings	can	be	reached	for	safety	critical	applications	in	different	domains
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SAFEPOWER Avionics Use Case
• Hypervisor	partitions	for	Power	Monitoring	App,	Maintenance	Record	System,	…
• Tile	“partitions”	for	Actuators,	Flight	CTRL	System,	Flight	CTRL	System	&	LDU
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Virtual Platform Results
• Virtual	platform	results	were	equivalent	to	hardware	based	results	for	the	tests	that	could	be	run	on	both	
platforms

• Virtual	platform	uses	the	same	binaries,	and	so	can	be	utilized	in	test	and	certification	of	safety	critical	applications

• Virtual	platform	provided	benefits	over	the	hardware	platform	for	development,	debug,	analysis	and	
verification	of	software	applications

1) Execution	control:		Simulation	is	deterministic
2) Unified	debug	environment:		Simultaneous	debug	of	all	application	code	executing	on	all	processors	in	the	

platform,	including	access	to	peripherals
• Analysis	tools	such	as	profiling,	code	coverage,	dynamic	assertions,	etc.	are	implemented	non-intrusively:		no	
modification	or	instrumentation	of	source	code	required

• Power	Interface	Library,	implemented	using	Imperas	SlipStreamer	API	(binary	interception),	enabled	support	for	real	
time	power	management	techniques	such	as	DVFS	within	the	virtual	platform	environment

3) Fault	injection:		The	virtual	platform	provides	visibility	and	observability,	so	faults	can	be	injected	anywhere	
in	the	platform,	e.g.	memory,	processor	registers,	… Fault	injection	is	implemented	by	an	external	library,	
so	fault	generation	can	be	controlled
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Summary

• Virtual	platform	was	used	for	development	of	mixed-criticality	system
• Several	challenges	were	encountered	and	overcome:

• Power	modeling	for	power	monitoring	and	management
• Fault	injection	testing
• Support	of	time-triggered	system

• Virtual	platform	environment	had	equivalent	results	to	hardware	platform,	
with	a	number	of	advantages	due	to	the	controllability,	observability,	
determinism	and	ease	of	automation	of	the	software	simulation
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