
www.embedded-world.eu 

 

 

Software driven SoC Architectural Exploration for 

AI and ML accelerators with RISC-V 
  

Simon Davidmann, Lee Moore, and Larry Lapides 

Imperas Software Ltd. 

Oxford, United Kingdom 

LarryL@imperas.com 
 

 
Abstract— SoC developers and system designers are looking at 

hardware acceleration options for AI and Machine Learning 

applications moving from cloud-based algorithms to dedicated 

hardware. Since the algorithms are already configured with 

multicore support the tradeoffs become focused on the structure 

of processor arrays and the optimum performance requirements 

at each node. In addition to the flexibility offered by the open 

standard ISA of RISC-V to configure the core features to match 

the compute requirement, RISC-V offers the options to add 

custom extensions and instructions that allows a greater degree of 

system optimization. New extensions can be targeted at the 

application workload or as dedicated communication channels 

between the cores, nodes and/or interfaces to the NoC.  This paper 

covers a methodology to evaluate the hardware options by 

enabling early system architectural exploration using software to 

uncover the optimum design configurations.  

Keywords— RISC-V, Multicore, Processor, SoC, 

I.  INTRODUCTION 

Artificial Intelligence (AI) and Machine Learning (ML) 
research and development based on software developed around 
cloud/datacenter resources has produced a wide range of 
algorithms that produce useful results with large databases and 
real-world datasets. To support the next level of requirements, 
optimized hardware can be developed for edge, near edge or 
datacenter with dedicated accelerators. Since the software 
platforms and algorithms already support distributed array 
processing as used in datacenters this helps the move to 
multicore configurations for dedicated hardware. However, a 
large number of options and configurations still need to be 
evaluated in order to select the most optimized design for the 
target application solution. 

The goal of dedicated hardware accelerators is to optimize 
the performance around a target application or use-case. In this 
way the hardware design can first be developed around the 
general requirements and then further refined by tuning of the 
software to address the application features in detail. In this way 
the high-level hardware and software developments can proceed 
in parallel until the ideal balance or optimized performance is 
achieved.  

The chart in Fig. 1, shows the history of multicore adoption, 
which has increased to compensate for the reduced 
improvements with single core performance and frequency [1]. 

This paper will explore the limitations on multiprocessor 
design as defined by Amdahl’s Law and the implications for 
hardware accelerators. This will be illustrated with an example 
SoC processor array based on a heterogeneous design featuring 
both Arm and RISC-V CPU cores.  

 

 

 

 

 

 

 

 

 

 

Fig. 1.  48 years of microprocessor trend data [1] 

   

II. AMDAHL’S LAW 

One important consideration for any developer of multicore 
pressor designs is Amdahl’s law [2]. Named after Gene Amdahl, 
a computer scientist who worked at IBM before founding 
Amdahl Computers, Amdahl’s law gives a theoretical level of 
performance that can be achieved by use of parallel processing 
to speed up a given task. In any algorithm some operations can 
be performed in parallel and can be mapped with efficient scale 
to multiple processing elements (PE), however some other 
functions will need to be processed in a strict order and/or have 
other dependences. This produces a scale of reference given the 
percentage of any particular application that has compute 
requirement that cannot be processed in parallel. Using 



Amdahl’s laws as a guide it can be possible to predict the 
optimum number of hardware resources that would be the most 
beneficial before reaching a point of diminishing return, that is 
the point at which the additional hardware gives proportionally 
reduced overall improvements. The formula is shown in Fig. 2, 
and a graph illustrates the efficiency limits that could be 
expected for a number of examples in Fig. 3. For an SoC design 
to operate efficiently as a hardware accelerator for an AI 
algorithm, the detailed analysis and operational dependences can 
help to guide the insights into the potential design structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Amdahl’s Formula [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Chart of processors/speedup [2] 

While an interesting concept for first order approximations, 
much of the expected efficiency could be lost due to data transfer 
inefficiencies, or a theoretical design that exceeds the cost 
(silicon die area) or power budget anticipated for the final 

product. In addition to inefficiencies around data movement, 
another factor is the inter-core communications. Within a 
multiprocessor system a number of communication needs could 
arise from synchronizing activities, buffer limits, exceptional 
events, as well as routine processor errors or other interrupt 
conditions. The frequency of these events and the corresponding 
message bandwidth may have a significant impact on the 
prospects of achieving the theoretical speed ups predicted with 
just calculations-based estimates. 

While a purely hardware view of the workload and algorithm 
partitioning may appear to over some interesting support for 
some configurations, the software useability needs to be 
considered also. When the hardware is finalized, the software 
side of the solution may need to be evolved further to address 
changing requirements and further optimization. The debug and 
code maintenance tasks cannot be understated. In some 
situations, the software will be developed by other users in the 
future and developers not familiar with the detailed hardware 
tradeoffs, so care must be taken to provide debug and 
performance processing features that assist the future developers 
to monitor and adapt the software. 

III. MULTICORE PROCESSOR ARRAYS 

A number of options for configuring processing elements are 
well documented. Typical designs contain arrays of processors 
and hierarchy. The block diagram in Fig. 4, shows this as a two-
dimensional array. Depending on the workload of the algorithm, 
the Processing Element (PE) could be a single core, dual-core or 
multicore. Additional options could be to consider a 
heterogeneous multicore PE, such as mixing scalar and vector 
processors even with the same base instruction set architecture, 
or using dedicated hardware for either data processing or as a 
communication channel. All of these options have various 
merits and advantages that can be considered as the workload 
requirements for a targeted set of application needs are profiled.  

As with any design process there are two items that need to 
be considered.  First, the future roadmap of requirements and 
how well this PE will cover the anticipated changes ahead, or if 
the hardware evolves into a second generation will the software 
investment migrate efficiently.  Second, as by definition the PE 
will be a programmable unit, how will adopters develop, debug 
and optimize the future software and support maintenance 
updates over the lifetime of the hardware. As much of the design 
performance and efficiency depends on the operation of the PE 
this design can be a major focus to evaluate the different 
configuration options, however in isolation as a single unit it 
may not be possible to fully evaluate all aspects of the design 
until it is implemented with the larger multicore array. So, while 
the PE can be consider as becoming the main unit of the 
multicore array, it may be necessary to iterate on the design 
features after reviewing the initial results with a multicore 
evaluation set-up. 

 

 

 

 



www.embedded-world.eu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once the configuration of the basic PE building block is 
chosen, the next step is to select the number and configurations 
of PE’s with the overall multicore design. This could be an array 
with communications over a common shared NoC (Network-on-
Chip) structure, or with groups of PE’s with local 
communication and then a NoC across a large number of 
clusters. To manage the overall control and operations a number 
of Control Processors (CP) can be configured to manage the 
multicore array and external interfaces. Given the range of 
requirements this may share the same ISA as the PE cores, or be 
a perhaps a different ISA more tuned to the control requirements.  

Another aspect of developing a new multicore SoC is the 
anticipation of future generations of hardware design. Giving 
consideration to the bandwidth of the CP and how this will scale 
with the future potential PE arrays may be a useful consideration 
in selecting the ISA and configurations of the CP. However, it is 
not required or perhaps even desirable to have all cores uniform 
in features and performance. Given the target workload and 
application area it may be useful to have a combination of 
resources that are tuned to the requirements of the application or 
algorithm.  

One other configuration choice to be considered is having an 
additional applications processor external to the AI accelerator 
array as a front-end to the AI processing. This applications 
processor might often use a familiar ISA and operating system 
to aid user familiarity and ramp up.  For example, if the user 
entry into the AI accelerator is an applications processor running 
Linux, and the AI routine is a Linux application that makes use 
– transparently to the user – of the AI accelerator, this could help 
adoption of the new SoC.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One universal requirement is the debug features and 
resources that future developers will need to support software 
development and maintenance. This will need to be considered 
all through the design project: 

• Pre-Silicon: Project concept, development and 
profiling 

• Post-Silicon: First silicon bring-up, firmware 
development, demos and evaluations 

• Production: Adoption by end users, including complete 
lifecycle of software management 

IV. OVERVIEW OF ALEXNET 

AlexNet [3] is a well-known convolutional neural network 
(CNN) algorithm, which achieves high accuracy in image 
recognition, but which also has extensive compute requirements. 
The AlexNet structure is shown in Fig. 5, which illustrates the 
potential for parallel processing. The number of parameters is 58 
million (Floating-Point 32bit) with a computational cost of 1 
billion multiply-add operations. The AlexNet performance 
requirements are illustrated in Fig. 6. 

 

 

 

 

 

 

 

 

Fig. 5.  Convolution layers have lots of calculations, parallelized these 
layers map AlexNet over the 16 CPU cores 

 

Fig. 4.  Multicore arrays configurations for Processing Elements (PE) hierarchy 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  Workload chart of Multiply-Adds 

    

V. SOFTWARE DRIVEN PROFILING 

Having explored the details of the AlexNet algorithm it 
appeared that with a PE based on a single core of medium 
performance would have sufficient compute resources to 
undertake the key central processing steps. In reviewing the 
guidance offered by Amdahl’s law, a common approach is to 
consider the symmetry of the operations across multiple of 2 or 
units of 8, 16, or 32, as a way to estimate the number of PE’s 
that could prove to be the most efficient. But with the additional 
impact on the area (SoC die size) budget the advantages of 32 
were much less attractive than an optimized configuration of 16 
PE. To oversee the operations of the multicore array and act at 
the main interface point a single high-performance core was 
selected. Again, due to the single thread workload requirements 
and overall lack of parallelism in many of these oversight 
functions, a multicore solution gives only marginal 
improvements, so a single core was selected as the main CP. The 
design was configured with 17 (16 + 1) cores. The block diagram 
is shown in Fig. 7. 

 

 

 

 

 

 

 

 

 

Fig. 7.  Block diagram of virtual platform with 17 CPU cores 

 Developed using the open-source models available from 
OVPworld [4], a virtual platform was built using the model 
library for an Arm Cortex-A57 [5] as the control processor, and 

the 16 PE’s based on RISC-V cores configured as RV64GC [6] 
for the AI accelerator array. The virtual platform was completed 
with interconnects between the Arm and RISC-V subsystems 
including standard peripherals and interfaces.  

With the virtual platform set-up, the next step was to map the 
original software implementation on to the array. With a virtual 
platform this can be achieved with a simple direct memory load 
to each PE, which is useful for a quick start to the profiling and 
investigation phase. However, the actual start-up process can be 
developed after the initial tests confirm this as a useful 
configuration.  

Having pre-loaded all the programs the multiprocessor 
design can now be simulated and with the use real world datasets 
start to profile the operation of the complete design. The debug 
and analysis tools provided by Imperas [7] offers a single user 
interface to inspect any of the 17 cores, and cross trigger debug 
events between any of the cores, peripherals, or interfaces. The 
simulation view can be seen in Fig. 8, heterogenous debug in 
Fig. 9, and some sample results for one of the test images are 
shown in Fig. 10.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  Multicore simulation of virtual platform 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Heterogenous multicore debug and analysis 

 

 

 



www.embedded-world.eu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  Example results for cat image 

VI. RISC-V OPTIMIZATIONS 

Within the AlexNet example above, a RISC-V core was 
selected as the main processor array. Since RISC-V is an open 
standard ISA it allows SoC developers a number of options in 
selecting processor cores, such as develop a new design based 
on the specification, using one of the many open source cores, 
or selecting from the growing number of commercial core 
providers. In addition, with any of these starting options, an SoC 
developer can modify and extend a core with custom 
instructions. This allows for a core to be optimized for the 
application or targeted workload. Also in multicore processor 
design one major consideration is the overhead of core to core, 
PE to PE, and PE to NoC communications. Using the 
heavyweight traditional processor bus protocols may affect the 
processing performance and overall efficiency of the system. 
With a custom RISC-V design a lightweight inter-core 
communication link could be added with custom instructions 
and state registers.  

In addition to the flexibility that RISC-V offers SoC 
developers, the verification challenges for a custom or extended 
processor need to be considered also, more detail on this area 
can be found in the Imperas paper presented at Embedded World 
2020 on RISC-V Verification [8]. 

VII. CONCLUSIONS 

This paper illustrates the design configurations and options 
that SoC developers can consider in developing a multicore 
design for an AI application. In building a custom accelerator a 
number of tradeoffs need to be evaluated to develop an 
optimized solution. In addition to the profiling the design 

options, considerations for future software design, debug, 
analysis and maintenance needs to be included. 

In looking ahead to further optimizations, the PE could be 
profiled further to perhaps add custom instructions. Also, the 
new RISC-V vector extensions offer more options in mapping 
AI algorithms to dedicated hardware accelerators. 

 

ACKNOWLEDGMENT 

The authors would that to thank the engineers at eSol Trinity 
for the implementation and results presented in this paper. The 
authors would like to thank RISC-V International for the 
specifications referenced in this paper. The authors would like 
to thank Arm for the Arm Cortex-A57 core features and 
documentation referenced in this paper. 

   

 

REFERENCES 

The template will number citations consecutively within 
brackets [1]. The sentence punctuation follows the bracket [2]. 
Refer simply to the reference number, as in [3]—do not use 
“Ref. [3]” or “reference [3]” except at the beginning of a 
sentence: “Reference [3] was the first ...” 

Number footnotes separately in superscripts. Place the actual 
footnote at the bottom of the column in which it was cited. Do 
not put footnotes in the reference list. Use letters for table 
footnotes. 

Unless there are six authors or more give all authors’ names; 
do not use “et al.”. Papers that have not been published, even if 
they have been submitted for publication, should be cited as 
“unpublished” [4]. Papers that have been accepted for 
publication should be cited as “in press” [5]. Capitalize only the 
first word in a paper title, except for proper nouns and element 
symbols. 

For papers published in translation journals, please give the 
English citation first, followed by the original foreign-language 
citation [6]. 

 
[1] Background and repository with 48 years of Microprocessor trend data 

https://github.com/karlrupp/microprocessor-trend-data 

[2] Amdahl’s law https://en.wikipedia.org/wiki/Amdahl's_law 

[3] Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. (2017-05-
24). "ImageNet classification with deep convolutional neural networks" 

[4] OVP planforms and models available at https://www.ovpworld.org 

[5] Arm Cortex-A57 https://www.arm.com 

[6] RISC-V Specifications https://riscv.org/technical/specifications 

[7] Imperas Software commercial simulation solutions, debug and analysis 
tools https://www.imperas.com 

[8] Imperas Software paper at Embedded World 2020 on RISC-V verification 
“Impact of RISC-V Adaptability on SoC Verification Methods”

 

https://github.com/karlrupp/microprocessor-trend-data
https://en.wikipedia.org/wiki/Amdahl's_law
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://www.ovpworld.org/
https://www.arm.com/
https://riscv.org/technical/specifications
https://www.imperas.com/
https://www.imperas.com/articles/ew20-paper-impact-risc-v-adaptability-soc-verification-methods

	I.  Introduction
	II. Amdahl’s Law
	III. Multicore processor arrays
	IV. Overview of AlexNet
	V. Software driven profiling
	VI. RISC-V optimizations
	VII. Conclusions
	Acknowledgment
	References


