

www.embedded-world.eu

 Methodology for Implementation of Custom

Instructions in the RISC-V Architecture

Lee Moore, Simon Davidmann and Larry Lapides
Imperas Software Ltd.

Oxford, United Kingdom
larryl@imperas.com

Carl Shaw
Cerberus Security Labs

Bristol, United Kingdom
carl.shaw@cerb-labs.com

Abstract—One of the key advantages of the new RISC-V
Instruction Set Architecture (ISA) is that SoC designers are able
to add custom features to the ISA to support their specific
applications. There are some risks to doing this, both business and
technical, plus there is a need to be able to analyze and optimize
the customizations.

One approach to customization of RISC-V cores is to use
correct-by-construction tools to generate both the compliant and
custom pieces of the processor. A second approach is to implement
the custom features directly in RTL.

With both approaches to implementation, there is still the need
for both compliance testing and analytical feedback to enable
optimization of the customizations.

This paper discusses the alternatives for implementation, and
describes an instruction accurate virtual platform methodology
for compliance testing and architecture exploration. In this
methodology, there is an existing parameterized model of the
RISC-V ISA specification, and the custom features are added in
an external library. This has the advantage of providing a well-
verified compliant model, while at the same time enabling the use
of the software debug, analysis and test tools in the virtual
platform environment.

A case study involving the addition of custom security
functionality to a 32-bit RISC-V core is presented, including the
compliance testing, memory analysis, function and instruction
profiling including timing estimation.

Keywords—RISC-V, processor, custom instructions, virtual
platforms, processor models, simulation

I. INTRODUCTION
The new RISC-V Instruction Set Architecture (ISA) [1] has

received a growing amount of attention recently. This may be
due to the open nature of the ISA, so that processor developers
can build their own processor implementations and add custom
features. In addition RISC-V has enabled creative business
models that includes academic projects, open source cores and a
growing IP ecosystem of commercial vendors. The RISC-V
ISA is modular, in that developers can choose to implement only
the base integer instructions, or any of the instructions subsets,

such as Multiply (M), Atomic (A), Floating Point (F), Double
Precision Floating Point (D) and Compressed (C). In addition
to these subsets, additional subsets are being defined by working
groups in the RISC-V community, such as for vector instructions
and bit manipulation instructions. Also, developers can choose
to only implement the base machine privilege level, or also
implement supervisor and user privilege modes.

 While other ISAs used in embedded systems are set, the
RISC-V ISA has the advantage of providing processor
developers with the ability to add custom features – instructions,
registers, … – to their implementations of the RISC-V
architecture. This ability to customize means that RISC-V cores
can be adapted to fit the functional requirements of a SoC.
RISC-V cores are also being looked at for IoT applications at the
low performance/power end for edge applications, and at AI and
machine learning applications at the high end, again taking
advantage of the ability to customize the cores.

However, with customization comes risks. Some of the risks
are of more a business flavor, while some are more technical in
nature. For example, customization means having to also
customize the tool chain. Customization means having to
optimize the complete processor implementation, and the extra
effort of verifying the customizations.

This paper starts by discussing the alternative approaches to
the implementation of customizations to the RISC-V cores.
Architecture analysis and optimization methodology is
presented, finishing with a case study on the addition of custom
security features to a 32-bit RISC-V core.

II. IMPLEMENTING CUSTOM RISC-V FEATURES

A. Implementation Methodology Overview
Most developers regard the addition of custom features as a

hardware design task, similar to adding custom components to
the SoC as RTL. Taking this path of adding the custom features
to the RTL first is not recommended, however, it is instructive
in the context of RISC-V to understand how this could be done.
Note that while features such as additional system registers can
be added to the processor, in this paper the focus is on custom
instructions.

The RISC-V processor specification has several deliberately
defined decode spaces, for example custom0, custom1 etc. into
which new custom instructions can be added.

B. Roll-Your-Own, Use Open Source RTL, or Processor IP
Vendors
The RISC-V ISA is open, so that anyone can implement that

ISA in RTL themselves, the “roll-your-own” approach.
Alternatively, there are a number of open source RTL
implementations that can be used [2], or one could license an
implementation from a growing list of RISC-V processor IP
vendor [3]. Factors that should be taken into account in this
decision include the experience and expertise of in-house
engineering resources with respect to processor design and
verification, the degree of compliance to the RISC-V
specification required for the specific use case, the ease of
adding custom features in the various environments.

C. Adding Custom Features
In the case of roll-your-own or using open source

implementations, adding the custom features is a matter of
modifying the RTL to add in the custom feature. This feature
then needs to be thoroughly verified, both for its own
functionality as well as to ensure that the addition of this feature
did not break any other piece of the processor.

For most of the commercially available RISC-V processor
IP, the vendors provide an environment or tool for adding
custom instructions. For many of these, the tool offering
includes automatically generating many of the ancillary
“ecosystem” tools and models, such as the compiler, debugger
and simulation models.

D. Compliance
For most ISAs compliance to the ISA specification is a

given. Since all the SoC designers license the RTL from a single
source, of course the RTL complies with the ISA specification.
Also, the IP vendor is going to support its own ecosystem, and
ensure that those ecosystem partners are in compliance with the
ISA spec.

With the new, open standard RISC-V ISA, the compliance
situation is different. There is no single IP vendor, no single
source, so compliance is an issue that needs to be addressed by
the RISC-V community. The RISC-V Foundation has formed a
task group to develop the compliance procedures for the RISC-V
community. The initial results of the task group – compliance
methodology, test suites, reference simulators – are available to
the community from a GitHub repository [4], and are described
in the paper by Moore et al [5].

III. CUSTOM INSTRUCTION FLOW
Custom features, such as additional instructions, are needed

because some product use case will execute more efficiently
with those custom features. A comprehensive flow –
characterizing and performing functional validation of the key
application on the standard processor, extending the processor
with custom instructions, analysis of the application execution
with the custom instructions, optimization of the custom

instructions – is critical to the success of the custom instructions
and the target product or application. Fig. 1 shows this flow.

Fig. 1. Flow for adding custom features to a RISC-V processor.

The key to this flow is having a high-performance instruction
accurate (IA) simulator, which supports the models needed and
the tools for architectural analysis, including timing estimation.
Note that this IA simulation based flow is a bit different than
how most of the processor industry thinks about processor
analysis and optimization. However, for most processors the
analysis and optimization focuses on microarchitectural features
such as the processor pipeline and on various levels of cache,
and in this case, cycle accurate simulation and models for
detailed timing analysis are required, along with pipeline
simulators such as gem5 [6].

For RISC-V, the goal is to optimize the processor
performance by adding custom instructions, so the focus is on
the target applications and the instructions, and not on the
microarchitecture. Tools such as instruction coverage,

www.embedded-world.eu

instruction profiling, code coverage and timing estimation (90%
accuracy required) are needed. Certainly, to achieve the
absolute peak microarchitectural performance for a RISC-V
processor, pipeline and cache optimization are required, and so
the conventional cycle accurate simulation and pipeline
simulator tools are needed. However, that is not the focus of this
paper.

IV. CASE STUDY: ADDING SECURITY INSTRUCTIONS

A. Case Study Setup
In this section the above flow is applied to the design of a

32-bit RISC-V processor, with a security application as the
target. The base virtual platform is configured as just processor
plus memory, as shown in Figs. 2 and 3. The base processor
model of the RV32IM processor comes from the Open Virtual
Platforms (OVP) Library [7]. This processor model is built
using the OVP APIs, and is an open source model, distributed
under the Apache 2.0 open source license.

Fig. 2. Virtual platform block diagram.

Fig. 3. Virtual platform address mapping.

The IA simulation environment includes the M*SDK and
cpuDev products from Imperas [8]. These products provide
such features as the IA simulator engine, software debugging,
and the software and processor analysis tools required for the
analysis and optimization of custom instructions.

The application is based upon the chacha20 encryption
algorithm [9]; it takes data from a file and performs encryption
upon it a line at a time.

B. Phase 1: Characterize the Application
The first step is to execute the application on the virtual

platform, and confirm the functional correctness of the
application. This is shown in Fig. 4.

The next step is timing estimation, using the Instruction
Accurate + Estimation (IA+E) technology described elsewhere
[5]. IA+E simulation is enabled by loading an extension library
that, amongst other things, monitors the instruction stream and
memory accesses and provides information back to the simulator
so that it can modify the instruction execution rate accordingly.

Now that the application is verified and a timing baseline has
been established, the application is profiled (based on analysis
of C functions executed) to understand where the performance
bottlenecks may occur. See Fig. 5 for the profiling output. From
the profiling results it is seen that the application is spending a
large percentage of the execution time in the qrN_c function that
implements the core of the chacha20 algorithm, with almost as
much again in the combined total of the the qr1_c, qr2_c, qr3_c
and qr4_c functions.

C. Phase 2: Develop New Custom Instructions
The base processor model and the custom instructions are

both developed in the same way, using the OVP VMI APIs. A
key aspect of this custom instruction methodology is that the
custom instructions are described in an instruction extension
library. The base processor model, which has been extensively
tested and verified by both developers and users, is not
perturbed, so that the high-quality base model is left untouched.

The instruction extension library to be built for this
application will include four custom instructions. Each uses the
same base behavior, but applies a different rotation value. In the
RISC-V ISA these will be R-Type instructions in custom-1
decode space, defined as shown in Table 1.

TABLE I. DECODE TABLE FOR THE CUSTOM INSTRUCTIONS.

Bits Bit Value description
 6 - 0 00 010 00 Custom-1 instruction class decode
11 - 7 xxxxx Identify the result register
14 - 12 000

001
010
011
1xx

QR1
QR2
QR3
QR4
Undefined

19 - 15 xxxxx Identify source register 1
24 - 20 xxxxx Identify source register 2
31 - 25 0000000 Instruction decode

The instruction behavior is then implemented in the
VMIOS_MORPH_FN callback. The code in Fig. 6 shows a
common function is used with a rotation value passed as one of
the arguments.

In a similar manner, the timing estimation library can be
extended to add the timing information for the custom
instructions.

D. Phase 3: Characterize the New Custom Instructions
In this phase tools such as instruction profiling and timing

estimation are used to understand the execution of the
application with the custom instructions.

The application can now be executed on the virtual platform,
including the instruction extension library and timing extension
library, as shown in Fig. 7. This shows that the application still
provides the correct results, that fewer total instructions were
executed, and that the simulation time has been reduced. Note
that in the Imperas tool environment the addition of the custom
instructions has no effect on the use of the tools; all tools work
with the new custom instructions.

Function profiling results are shown in Fig. 8, showing there
is no longer the appearance of the C algorithm functions we saw
previously, as this behavior is now performed by the custom
instructions.

There may be iteration of Phases 2 and 3 to develop and
characterize the new custom instructions.

E. Phase 4: Model Optimization and Documentation
When a custom instruction has been created we need to be

able to ensure that it is fully tested and that it is an efficient
implementation. One useful tool is instruction coverage. Like
conventional code coverage, instruction coverage is monitoring
the execution to verify that code has been tested, however in the
case of instruction coverage the execution being monitored is the
processor model and the instruction extension library instead of
the application source code. Instruction coverage results are
shown in Fig. 9, including showing coverage for the custom
instructions chacha20qr<N>.

The new model, including the based processor model plus
the instruction extension library, should be documented. This
documentation can serve as the specification for the
implementation of the custom instructions.

V. USING THE MODEL
Now that the custom instructions have been optimized in the

model, there are several uses of the customized processor model.
The first key use is as a golden reference model for design
verification of the implemented RTL; i.e. comparing the RTL to
the model. SoC verification is the most time-consuming and
resource-consuming task in hardware design. For most SoCs,
the processor IP has been purchased from a vendor, and does not

need to go through additional verification. In this case, with a
customized RISC-V processor, verification of the processor
implementation is a key task in the design cycle.

The second key use is for early, pre-silicon, pre-RTL
software development. The processor model can be used in a
virtual platform environment for operating system and driver
porting and bring up, and for firmware and application
development. Because the processor model, or the virtual
platform of the SoC, is available prior to RTL completion,
instruction accurate software simulation can accelerate software
development by months versus hardware emulators or FPGA
prototypes.

VI. CONCLUSIONS
This paper has presented an overview of the complete flow

for adding custom instructions to a RISC-V processor, while
providing a detailed description of how instruction accurate
simulation tools and models can be used to analyze and optimize
custom instructions.

ACKNOWLEDGMENT
The authors would like to thank Duncan Graham, who was

the source for the figures and tables.

REFERENCES

[1] The RISC-V ISA specification is available here:
https://riscv.org/specifications/.

[2] https://riscv.org/risc-v-cores/
[3] Andes Technology, Codasip, SiFive and Syntacore are among the RISC-

V processor IP vendors. The RISC-V growing ecosyem directory of
members can be found at https://riscv.org/members-at-a-glance/

[4] https://github.com/riscv/riscv-compliance/
[5] L. Moore, D. Graham, S. Davidmann and F. Rosa, Cycle approximate

simulation of RISC-V processors, embedded world conference 2018.
http://www.imperas.com/ew18-slides-on-using-an-ia-simulator-with-
timing-estimation-to-provide-high-performance-cycle

[6] http://www.gem5.org/
[7] Open Virtual Platforms (OVP) Library:

http://www.ovpworld.org/library/wikka.php?wakka=Library
[8] Imperas product web page: http://www.imperas.com/products
[9] https://www.cryptopp.com/wiki/ChaCha20

IMPERAS Instruction Set Simulator (ISS)

CpuManagerMulti (64-Bit) v20180716.0 Open Virtual Platform simulator from www.IMPERAS.com.
Copyright (c) 2005-2018 Imperas Software Ltd. Contains Imperas Proprietary Information.
Licensed Software, All Rights Reserved.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

CpuManagerMulti started: Tue Sep 18 08:47:27 2018

Info (OR_OF) Target 'iss/cpu0' has object file read from 'application/test_c.RISCV32.elf'
Info (OR_PH) Program Headers:
Info (OR_PH) Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags Align
Info (OR_PD) LOAD 0x00000000 0x00010000 0x00010000 0x00017430 0x00017430 R-E 1000
Info (OR_PD) LOAD 0x00017430 0x00028430 0x00028430 0x000009c0 0x00000a24 RW- 1000

Application program load

www.embedded-world.eu

Info (OR_OF) Target 'iss/cpu0' has object file read from 'application/exception.RISCV32.elf'
Info (OR_PH) Program Headers:
Info (OR_PH) Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags Align
Info (OR_PD) LOAD 0x00001000 0x00000000 0x00000000 0x0000000c 0x0000000c R-E 1000

RES = 84772366

Info
Info ---
Info CPU 'iss/cpu0' STATISTICS
Info Type : riscv (RV32IM)
Info Nominal MIPS : 100
Info Final program counter : 0x100ac
Info Simulated instructions: 1,994,024,026
Info Simulated MIPS : 1160.2
Info ---
Info
Info ---
Info SIMULATION TIME STATISTICS
Info Simulated time : 19.94 seconds
Info User time : 1.59 seconds
Info System time : 0.13 seconds
Info Elapsed time : 1.80 seconds
Info Real time ratio : 11.10x faster
Info ---

CpuManagerMulti finished: Tue Sep 18 08:47:28 2018

Fig. 4. Run summary and statistics from initial run of the target application.

Fig. 5. Function profiling results.

Functionality verified

Execution
statistics of

application on
processor

Execution
statistics

of
simulation

static VMIOS_MORPH_FN(doMorph) {

 // decode the instruction to get the type
 Uns32 instruction;
 riscvEnhancedInstrType type = getInstrType(object, processor, thisPC, &instruction);

 *opaque = True;
 if(type==RISCV_EIT_CHACHA20QR1) {
 emitChaCha20(processor, object, instruction, 16);

 } else if (type==RISCV_EIT_CHACHA20QR2) {
 emitChaCha20(processor, object, instruction, 12);

 } else if (type==RISCV_EIT_CHACHA20QR3) {
 emitChaCha20(processor, object, instruction, 8);

 } else if (type==RISCV_EIT_CHACHA20QR4) {
 emitChaCha20(processor, object, instruction, 7);

 } else {
 *opaque = False;
 }

 // no intercept callback specified
 return 0;
}

Fig. 6. Custom instruction behavior defined.

IMPERAS Instruction Set Simulator (ISS)

CpuManagerMulti (64-Bit) v20180716.0 Open Virtual Platform simulator from www.IMPERAS.com.
Copyright (c) 2005-2018 Imperas Software Ltd. Contains Imperas Proprietary Information.
Licensed Software, All Rights Reserved.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.

CpuManagerMulti started: Tue Sep 18 10:22:09 2018

Info (OP_LPR) Processor iss/cpu0
C:\Imperas\lib\Windows64\ImperasLib\riscv.ovpworld.org\processor\riscv\1.0\model
Info (OR_OF) Target 'iss/cpu0' has object file read from 'application/test_custom.RISCV32.elf'
Info (OR_PH) Program Headers:
Info (OR_PH) Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags Align
Info (OR_PD) LOAD 0x00000000 0x00010000 0x00010000 0x00017270 0x00017270 R-E 1000
Info (OR_PD) LOAD 0x00017270 0x00028270 0x00028270 0x000009c0 0x00000a24 RW- 1000
Info (OR_OF) Target 'iss/cpu0' has object file read from 'application/exception.RISCV32.elf'
Info (OR_PH) Program Headers:
Info (OR_PH) Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags Align
Info (OR_PD) LOAD 0x00001000 0x00000000 0x00000000 0x0000000c 0x0000000c R-E 1000
Info (OP_PEX) Extension iss/cpu0/riscv32Newlib
C:\Imperas\lib\Windows64\ImperasLib\riscv.ovpworld.org\semihosting\riscv32Newlib\1.0\model
Info (OP_PEX) Extension iss/cpu0/exInst instructionExtensionLib
RES = 84772366
Info
Info ---
Info CPU 'iss/cpu0' STATISTICS
Info Type : riscv (RV32IM)
Info Nominal MIPS : 100
Info Final program counter : 0x100ac
Info Simulated instructions: 677,012,570
Info Simulated MIPS : run too short for meaningful result

Custom instruction
extension library loaded

Functionality verified

Less instructions executed

www.embedded-world.eu

Info ---
Info
Info ---
Info SIMULATION TIME STATISTICS
Info Simulated time : 6.77 seconds
Info User time : 0.25 seconds
Info System time : 0.09 seconds
Info Elapsed time : 0.34 seconds
Info Real time ratio : 19.74x faster
Info ---

CpuManagerMulti finished: Tue Sep 18 10:22:10 2018

Fig. 7. Execution summary of the application on the modified processor model, including the custom instructions.

Fig. 8. Function profiling of the application running on the modified processor model, including the custom instructions.

Info (ICR_OF) cpu0: instruction profile report file 'coverageReports\cpu0.icr.txt'
iss/cpu0: Instruction Profile Totals:
OpCode : Pct : Count (Total instrs= 677012570)
-------------- : ------ : --------
 mv : 19.87% : 134497608
 lw : 16.78% : 113575358
 sw : 13.05% : 88327451
 addi : 8.70% : 58868837
 andi : 4.97% : 33620233
 beqz : 4.35% : 29426103

Lower simulation time

 bnez : 3.73% : 25248055
 add : 3.73% : 25231546
 slli : 3.10% : 21020892
 ret : 2.49% : 16843028
 jal : 2.49% : 16843026
 srli : 2.48% : 16810160
 bltu : 2.48% : 16793686
 bgeu : 1.24% : 8421494
 bltz : 1.24% : 8421470
 j : 1.24% : 8388742
 chacha20qr1 : 1.24% : 8388608
 chacha20qr2 : 1.24% : 8388608
 chacha20qr3 : 1.24% : 8388608
 chacha20qr4 : 1.24% : 8388608
 lh : 0.63% : 4243601
 auipc : 0.62% : 4210858
 sub : 0.62% : 4210835
 xor : 0.62% : 4210707
 not : 0.62% : 4194307
 beq : 0.00% : 16546
 jalr : 0.00% : 16430
 blez : 0.00% : 16407
 sb : 0.00% : 206
 lhu : 0.00% : 97
 sh : 0.00% : 82
 lui : 0.00% : 67
 or : 0.00% : 50
 and : 0.00% : 49
 lbu : 0.00% : 47
 bne : 0.00% : 34
 ori : 0.00% : 29
 jr : 0.00% : 25
 bge : 0.00% : 17
 neg : 0.00% : 16
 blt : 0.00% : 12
 srai : 0.00% : 8
 bgtz : 0.00% : 7
 bgez : 0.00% : 6
 sll : 0.00% : 4
 seqz : 0.00% : 2
 csrrc : 0.00% : 0
 csrrci : 0.00% : 0
 csrrs : 0.00% : 0
 csrrsi : 0.00% : 0
 csrrw : 0.00% : 0

Fig. 9. Instruction coverage results for the processor model plus the instruction extension library.

