
                                                                                                                                    

www.embedded-world.eu 
 

 
 Methodology for Implementation of Custom 

Instructions in the RISC-V Architecture 
 

Lee Moore, Simon Davidmann and Larry Lapides 
Imperas Software Ltd. 

Oxford, United Kingdom 
larryl@imperas.com 

Carl Shaw 
Cerberus Security Labs 

Bristol, United Kingdom 
carl.shaw@cerb-labs.com 

 
 

Abstract—One of the key advantages of the new RISC-V 
Instruction Set Architecture (ISA) is that SoC designers are able 
to add custom features to the ISA to support their specific 
applications. There are some risks to doing this, both business and 
technical, plus there is a need to be able to analyze and optimize 
the customizations.  

One approach to customization of RISC-V cores is to use 
correct-by-construction tools to generate both the compliant and 
custom pieces of the processor. A second approach is to implement 
the custom features directly in RTL.  

With both approaches to implementation, there is still the need 
for both compliance testing and analytical feedback to enable 
optimization of the customizations.  

This paper discusses the alternatives for implementation, and 
describes an instruction accurate virtual platform methodology 
for compliance testing and architecture exploration. In this 
methodology, there is an existing parameterized model of the 
RISC-V ISA specification, and the custom features are added in 
an external library. This has the advantage of providing a well-
verified compliant model, while at the same time enabling the use 
of the software debug, analysis and test tools in the virtual 
platform environment.  

A case study involving the addition of custom security 
functionality to a 32-bit RISC-V core is presented, including the 
compliance testing, memory analysis, function and instruction 
profiling including timing estimation. 

Keywords—RISC-V, processor, custom instructions, virtual 
platforms, processor models, simulation 

I.  INTRODUCTION  
The new RISC-V Instruction Set Architecture (ISA) [1] has 

received a growing amount of attention recently. This may be 
due to the open nature of the ISA, so that processor developers 
can build their own processor implementations and add custom 
features.  In addition RISC-V has enabled creative business 
models that includes academic projects, open source cores and a 
growing IP ecosystem of commercial vendors.  The RISC-V 
ISA is modular, in that developers can choose to implement only 
the base integer instructions, or any of the instructions subsets, 

such as Multiply (M), Atomic (A), Floating Point (F), Double 
Precision Floating Point (D) and Compressed (C).  In addition 
to these subsets, additional subsets are being defined by working 
groups in the RISC-V community, such as for vector instructions 
and bit manipulation instructions.  Also, developers can choose 
to only implement the base machine privilege level, or also 
implement supervisor and user privilege modes.   

 While other ISAs used in embedded systems are set, the 
RISC-V ISA has the advantage of providing processor 
developers with the ability to add custom features – instructions, 
registers, … – to their implementations of the RISC-V 
architecture.  This ability to customize means that RISC-V cores 
can be adapted to fit the functional requirements of a SoC.  
RISC-V cores are also being looked at for IoT applications at the 
low performance/power end for edge applications, and at AI and 
machine learning applications at the high end, again taking 
advantage of the ability to customize the cores.   

However, with customization comes risks.  Some of the risks 
are of more a business flavor, while some are more technical in 
nature.  For example, customization means having to also 
customize the tool chain.  Customization means having to 
optimize the complete processor implementation, and the extra 
effort of verifying the customizations.   

This paper starts by discussing the alternative approaches to 
the implementation of customizations to the RISC-V cores.  
Architecture analysis and optimization methodology is 
presented, finishing with a case study on the addition of custom 
security features to a 32-bit RISC-V core.  

II. IMPLEMENTING CUSTOM RISC-V FEATURES 

A. Implementation Methodology Overview 
Most developers regard the addition of custom features as a 

hardware design task, similar to adding custom components to 
the SoC as RTL.  Taking this path of adding the custom features 
to the RTL first is not recommended, however, it is instructive 
in the context of RISC-V to understand how this could be done.  
Note that while features such as additional system registers can 
be added to the processor, in this paper the focus is on custom 
instructions.   



The RISC-V processor specification has several deliberately 
defined decode spaces, for example custom0, custom1 etc. into 
which new custom instructions can be added. 

 

B. Roll-Your-Own, Use Open Source RTL, or Processor IP 
Vendors 
The RISC-V ISA is open, so that anyone can implement that 

ISA in RTL themselves, the “roll-your-own” approach.  
Alternatively, there are a number of open source RTL 
implementations that can be used [2], or one could license an 
implementation from a growing list of RISC-V processor IP 
vendor [3].  Factors that should be taken into account in this 
decision include the experience and expertise of in-house 
engineering resources with respect to processor design and 
verification, the degree of compliance to the RISC-V 
specification required for the specific use case, the ease of 
adding custom features in the various environments.   

C. Adding Custom Features 
In the case of roll-your-own or using open source 

implementations, adding the custom features is a matter of 
modifying the RTL to add in the custom feature.  This feature 
then needs to be thoroughly verified, both for its own 
functionality as well as to ensure that the addition of this feature 
did not break any other piece of the processor.   

For most of the commercially available RISC-V processor 
IP, the vendors provide an environment or tool for adding 
custom instructions.  For many of these, the tool offering 
includes automatically generating many of the ancillary 
“ecosystem” tools and models, such as the compiler, debugger 
and simulation models.    

D. Compliance 
For most ISAs compliance to the ISA specification is a 

given. Since all the SoC designers license the RTL from a single 
source, of course the RTL complies with the ISA specification. 
Also, the IP vendor is going to support its own ecosystem, and 
ensure that those ecosystem partners are in compliance with the 
ISA spec.   

With the new, open standard RISC-V ISA, the compliance 
situation is different. There is no single IP vendor, no single 
source, so compliance is an issue that needs to be addressed by 
the RISC-V community.  The RISC-V Foundation has formed a 
task group to develop the compliance procedures for the RISC-V 
community.  The initial results of the task group – compliance 
methodology, test suites, reference simulators – are available to 
the community from a GitHub repository [4], and are described 
in the paper by Moore et al [5].    

III. CUSTOM INSTRUCTION FLOW 
Custom features, such as additional instructions, are needed 

because some product use case will execute more efficiently 
with those custom features.  A comprehensive flow – 
characterizing and performing functional validation of the key 
application on the standard processor, extending the processor 
with custom instructions, analysis of the application execution 
with the custom instructions, optimization of the custom 

instructions – is critical to the success of the custom instructions 
and the target product or application.  Fig. 1 shows this flow.  

 
Fig. 1. Flow for adding custom features to a RISC-V processor.  

The key to this flow is having a high-performance instruction 
accurate (IA) simulator, which supports the models needed and 
the tools for architectural analysis, including timing estimation.  
Note that this IA simulation based flow is a bit different than 
how most of the processor industry thinks about processor 
analysis and optimization.  However, for most processors the 
analysis and optimization focuses on microarchitectural features 
such as the processor pipeline and on various levels of cache, 
and in this case, cycle accurate simulation and models for 
detailed timing analysis are required, along with pipeline 
simulators such as gem5 [6].   

For RISC-V, the goal is to optimize the processor 
performance by adding custom instructions, so the focus is on 
the target applications and the instructions, and not on the 
microarchitecture.  Tools such as instruction coverage, 



                                                                                                                                    

www.embedded-world.eu 
 

instruction profiling, code coverage and timing estimation (90% 
accuracy required) are needed.  Certainly, to achieve the 
absolute peak microarchitectural performance for a RISC-V 
processor, pipeline and cache optimization are required, and so 
the conventional cycle accurate simulation and pipeline 
simulator tools are needed.  However, that is not the focus of this 
paper.   

IV. CASE STUDY:  ADDING SECURITY INSTRUCTIONS 

A. Case Study Setup 
In this section the above flow is applied to the design of a 

32-bit RISC-V processor, with a security application as the 
target.  The base virtual platform is configured as just processor 
plus memory, as shown in Figs. 2 and 3.  The base processor 
model of the RV32IM processor comes from the Open Virtual 
Platforms (OVP) Library [7].  This processor model is built 
using the OVP APIs, and is an open source model, distributed 
under the Apache 2.0 open source license.   

 
Fig. 2. Virtual platform block diagram.  

 
Fig. 3. Virtual platform address mapping.   

The IA simulation environment includes the M*SDK and 
cpuDev products from Imperas [8].  These products provide 
such features as the IA simulator engine, software debugging, 
and the software and processor analysis tools required for the 
analysis and optimization of custom instructions.  

The application is based upon the chacha20 encryption 
algorithm [9]; it takes data from a file and performs encryption 
upon it a line at a time. 

B. Phase 1: Characterize the Application 
The first step is to execute the application on the virtual 

platform, and confirm the functional correctness of the 
application.  This is shown in Fig. 4.   

The next step is timing estimation, using the Instruction 
Accurate + Estimation (IA+E) technology described elsewhere 
[5].  IA+E simulation is enabled by loading an extension library 
that, amongst other things, monitors the instruction stream and 
memory accesses and provides information back to the simulator 
so that it can modify the instruction execution rate accordingly. 

Now that the application is verified and a timing baseline has 
been established, the application is profiled (based on analysis 
of C functions executed) to understand where the performance 
bottlenecks may occur.  See Fig. 5 for the profiling output.  From 
the profiling results it is seen that the application is spending a 
large percentage of the execution time in the qrN_c function that 
implements the core of the chacha20 algorithm, with almost as 
much again in the combined total of the the qr1_c, qr2_c, qr3_c 
and qr4_c functions.  

C. Phase 2: Develop New Custom Instructions 
The base processor model and the custom instructions are 

both developed in the same way, using the OVP VMI APIs.  A 
key aspect of this custom instruction methodology is that the 
custom instructions are described in an instruction extension 
library.  The base processor model, which has been extensively 
tested and verified by both developers and users, is not 
perturbed, so that the high-quality base model is left untouched.   

The instruction extension library to be built for this 
application will include four custom instructions.  Each uses the 
same base behavior, but applies a different rotation value.  In the 
RISC-V ISA these will be R-Type instructions in custom-1 
decode space, defined as shown in Table 1. 

TABLE I.  DECODE TABLE FOR THE CUSTOM INSTRUCTIONS. 

Bits Bit Value description 
 6  -   0 00 010 00 Custom-1 instruction class decode 
11 -   7 xxxxx Identify the result register 
14 - 12 000 

001 
010 
011 
1xx 

QR1 
QR2 
QR3 
QR4 
Undefined 

19 - 15 xxxxx Identify source register 1 
24 - 20 xxxxx Identify source register 2 
31 - 25 0000000 Instruction decode 
 

The instruction behavior is then implemented in the 
VMIOS_MORPH_FN callback.  The code in Fig. 6 shows a 
common function is used with a rotation value passed as one of 
the arguments. 

In a similar manner, the timing estimation library can be 
extended to add the timing information for the custom 
instructions.   



D. Phase 3: Characterize the New Custom Instructions 
In this phase tools such as instruction profiling and timing 

estimation are used to understand the execution of the 
application with the custom instructions.   

The application can now be executed on the virtual platform, 
including the instruction extension library and timing extension 
library, as shown in Fig. 7.  This shows that the application still 
provides the correct results, that fewer total instructions were 
executed, and that the simulation time has been reduced.  Note 
that in the Imperas tool environment the addition of the custom 
instructions has no effect on the use of the tools; all tools work 
with the new custom instructions.  

Function profiling results are shown in Fig. 8, showing there 
is no longer the appearance of the C algorithm functions we saw 
previously, as this behavior is now performed by the custom 
instructions.   

There may be iteration of Phases 2 and 3 to develop and 
characterize the new custom instructions. 

E. Phase 4: Model Optimization and Documentation 
When a custom instruction has been created we need to be 

able to ensure that it is fully tested and that it is an efficient 
implementation.  One useful tool is instruction coverage.  Like 
conventional code coverage, instruction coverage is monitoring 
the execution to verify that code has been tested, however in the 
case of instruction coverage the execution being monitored is the 
processor model and the instruction extension library instead of 
the application source code.  Instruction coverage results are 
shown in Fig. 9, including showing coverage for the custom 
instructions chacha20qr<N>.  

The new model, including the based processor model plus 
the instruction extension library, should be documented.  This 
documentation can serve as the specification for the 
implementation of the custom instructions.   

V. USING THE MODEL 
Now that the custom instructions have been optimized in the 

model, there are several uses of the customized processor model.  
The first key use is as a golden reference model for design 
verification of the implemented RTL; i.e. comparing the RTL to 
the model.  SoC verification is the most time-consuming and 
resource-consuming task in hardware design.  For most SoCs, 
the processor IP has been purchased from a vendor, and does not 

need to go through additional verification.  In this case, with a 
customized RISC-V processor, verification of the processor 
implementation is a key task in the design cycle.   

The second key use is for early, pre-silicon, pre-RTL 
software development.  The processor model can be used in a 
virtual platform environment for operating system and driver 
porting and bring up, and for firmware and application 
development.  Because the processor model, or the virtual 
platform of the SoC, is available prior to RTL completion, 
instruction accurate software simulation can accelerate software 
development by months versus hardware emulators or FPGA 
prototypes.   

VI. CONCLUSIONS 
This paper has presented an overview of the complete flow 

for adding custom instructions to a RISC-V processor, while 
providing a detailed description of how instruction accurate 
simulation tools and models can be used to analyze and optimize 
custom instructions.   

ACKNOWLEDGMENT  
The authors would like to thank Duncan Graham, who was 

the source for the figures and tables.   

 

REFERENCES 
 

[1] The RISC-V ISA specification is available here:  
https://riscv.org/specifications/.  

[2] https://riscv.org/risc-v-cores/ 
[3] Andes Technology, Codasip, SiFive and Syntacore are among the RISC-

V processor IP vendors.  The RISC-V growing ecosyem directory of 
members can be found at https://riscv.org/members-at-a-glance/ 

[4] https://github.com/riscv/riscv-compliance/ 
[5] L. Moore, D. Graham, S. Davidmann and F. Rosa, Cycle approximate 

simulation of RISC-V processors, embedded world conference 2018.  
http://www.imperas.com/ew18-slides-on-using-an-ia-simulator-with-
timing-estimation-to-provide-high-performance-cycle 

[6] http://www.gem5.org/ 
[7] Open Virtual Platforms (OVP) Library:  

http://www.ovpworld.org/library/wikka.php?wakka=Library 
[8] Imperas product web page:  http://www.imperas.com/products 
[9] https://www.cryptopp.com/wiki/ChaCha20 

 

 
 
IMPERAS Instruction Set Simulator (ISS) 
 
 
CpuManagerMulti (64-Bit) v20180716.0 Open Virtual Platform simulator from www.IMPERAS.com. 
Copyright (c) 2005-2018 Imperas Software Ltd.  Contains Imperas Proprietary Information. 
Licensed Software, All Rights Reserved. 
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions. 
 
CpuManagerMulti started: Tue Sep 18 08:47:27 2018 
 
 
Info (OR_OF) Target 'iss/cpu0' has object file read from 'application/test_c.RISCV32.elf' 
Info (OR_PH) Program Headers: 
Info (OR_PH) Type           Offset     VirtAddr   PhysAddr   FileSiz    MemSiz     Flags Align 
Info (OR_PD) LOAD           0x00000000 0x00010000 0x00010000 0x00017430 0x00017430 R-E   1000 
Info (OR_PD) LOAD           0x00017430 0x00028430 0x00028430 0x000009c0 0x00000a24 RW-   1000 

Application program load 
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Info (OR_OF) Target 'iss/cpu0' has object file read from 'application/exception.RISCV32.elf' 
Info (OR_PH) Program Headers: 
Info (OR_PH) Type           Offset     VirtAddr   PhysAddr   FileSiz    MemSiz     Flags Align 
Info (OR_PD) LOAD           0x00001000 0x00000000 0x00000000 0x0000000c 0x0000000c R-E   1000 
 
RES = 84772366 
 
Info 
Info --------------------------------------------------- 
Info CPU 'iss/cpu0' STATISTICS 
Info   Type                  : riscv (RV32IM) 
Info   Nominal MIPS          : 100 
Info   Final program counter : 0x100ac 
Info   Simulated instructions: 1,994,024,026 
Info   Simulated MIPS        : 1160.2 
Info --------------------------------------------------- 
Info 
Info --------------------------------------------------- 
Info SIMULATION TIME STATISTICS 
Info   Simulated time        : 19.94 seconds 
Info   User time             : 1.59 seconds 
Info   System time           : 0.13 seconds 
Info   Elapsed time          : 1.80 seconds 
Info   Real time ratio       : 11.10x faster 
Info --------------------------------------------------- 
 
CpuManagerMulti finished: Tue Sep 18 08:47:28 2018 

Fig. 4. Run summary and statistics from initial run of the target application.   

 

 

 

 
Fig. 5. Function profiling results.  
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static VMIOS_MORPH_FN(doMorph) { 
 
    // decode the instruction to get the type 
    Uns32 instruction; 
    riscvEnhancedInstrType type = getInstrType(object, processor, thisPC, &instruction); 
 
    *opaque = True; 
    if(type==RISCV_EIT_CHACHA20QR1) { 
        emitChaCha20(processor, object, instruction, 16); 
 
    } else if (type==RISCV_EIT_CHACHA20QR2) { 
        emitChaCha20(processor, object, instruction, 12); 
 
    } else if (type==RISCV_EIT_CHACHA20QR3) { 
        emitChaCha20(processor, object, instruction, 8); 
 
    } else if (type==RISCV_EIT_CHACHA20QR4) { 
        emitChaCha20(processor, object, instruction, 7); 
 
    } else { 
        *opaque = False; 
    } 
 
    // no intercept callback specified 
    return 0; 
} 

 
Fig. 6. Custom instruction behavior defined.  

 

 

 

 
IMPERAS Instruction Set Simulator (ISS) 
 
 
CpuManagerMulti (64-Bit) v20180716.0 Open Virtual Platform simulator from www.IMPERAS.com. 
Copyright (c) 2005-2018 Imperas Software Ltd.  Contains Imperas Proprietary Information. 
Licensed Software, All Rights Reserved. 
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions. 
 
CpuManagerMulti started: Tue Sep 18 10:22:09 2018 
 
 
Info (OP_LPR) Processor  iss/cpu0                                 
C:\Imperas\lib\Windows64\ImperasLib\riscv.ovpworld.org\processor\riscv\1.0\model 
Info (OR_OF) Target 'iss/cpu0' has object file read from 'application/test_custom.RISCV32.elf' 
Info (OR_PH) Program Headers: 
Info (OR_PH) Type           Offset     VirtAddr   PhysAddr   FileSiz    MemSiz     Flags Align 
Info (OR_PD) LOAD           0x00000000 0x00010000 0x00010000 0x00017270 0x00017270 R-E   1000 
Info (OR_PD) LOAD           0x00017270 0x00028270 0x00028270 0x000009c0 0x00000a24 RW-   1000 
Info (OR_OF) Target 'iss/cpu0' has object file read from 'application/exception.RISCV32.elf' 
Info (OR_PH) Program Headers: 
Info (OR_PH) Type           Offset     VirtAddr   PhysAddr   FileSiz    MemSiz     Flags Align 
Info (OR_PD) LOAD           0x00001000 0x00000000 0x00000000 0x0000000c 0x0000000c R-E   1000 
Info (OP_PEX) Extension  iss/cpu0/riscv32Newlib                   
C:\Imperas\lib\Windows64\ImperasLib\riscv.ovpworld.org\semihosting\riscv32Newlib\1.0\model 
Info (OP_PEX) Extension  iss/cpu0/exInst                          instructionExtensionLib 
RES = 84772366 
Info 
Info --------------------------------------------------- 
Info CPU 'iss/cpu0' STATISTICS 
Info   Type                  : riscv (RV32IM) 
Info   Nominal MIPS          : 100 
Info   Final program counter : 0x100ac 
Info   Simulated instructions: 677,012,570 
Info   Simulated MIPS        : run too short for meaningful result 

Custom instruction 
extension library loaded 

Functionality verified 

Less instructions executed 
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Info --------------------------------------------------- 
Info 
Info --------------------------------------------------- 
Info SIMULATION TIME STATISTICS 
Info   Simulated time        : 6.77 seconds 
Info   User time             : 0.25 seconds 
Info   System time           : 0.09 seconds 
Info   Elapsed time          : 0.34 seconds 
Info   Real time ratio       : 19.74x faster 
Info --------------------------------------------------- 
 
CpuManagerMulti finished: Tue Sep 18 10:22:10 2018 

Fig. 7. Execution summary of the application on the modified processor model, including the custom instructions.  

 

 

 
Fig. 8. Function profiling of the application running on the modified processor model, including the custom instructions.  

 

 
Info (ICR_OF) cpu0: instruction profile report file 'coverageReports\cpu0.icr.txt' 
# iss/cpu0: Instruction Profile Totals: 
#         OpCode :    Pct : Count (Total instrs=       677012570) 
# -------------- : ------ : -------- 
              mv : 19.87% :        134497608 
              lw : 16.78% :        113575358 
              sw : 13.05% :         88327451 
            addi :  8.70% :         58868837 
            andi :  4.97% :         33620233 
            beqz :  4.35% :         29426103 

Lower simulation time 



            bnez :  3.73% :         25248055 
             add :  3.73% :         25231546 
            slli :  3.10% :         21020892 
             ret :  2.49% :         16843028 
             jal :  2.49% :         16843026 
            srli :  2.48% :         16810160 
            bltu :  2.48% :         16793686 
            bgeu :  1.24% :          8421494 
            bltz :  1.24% :          8421470 
               j :  1.24% :          8388742 
     chacha20qr1 :  1.24% :          8388608 
     chacha20qr2 :  1.24% :          8388608 
     chacha20qr3 :  1.24% :          8388608 
     chacha20qr4 :  1.24% :          8388608 
              lh :  0.63% :          4243601 
           auipc :  0.62% :          4210858 
             sub :  0.62% :          4210835 
             xor :  0.62% :          4210707 
             not :  0.62% :          4194307 
             beq :  0.00% :            16546 
            jalr :  0.00% :            16430 
            blez :  0.00% :            16407 
              sb :  0.00% :              206 
             lhu :  0.00% :               97 
              sh :  0.00% :               82 
             lui :  0.00% :               67 
              or :  0.00% :               50 
             and :  0.00% :               49 
             lbu :  0.00% :               47 
             bne :  0.00% :               34 
             ori :  0.00% :               29 
              jr :  0.00% :               25 
             bge :  0.00% :               17 
             neg :  0.00% :               16 
             blt :  0.00% :               12 
            srai :  0.00% :                8 
            bgtz :  0.00% :                7 
            bgez :  0.00% :                6 
             sll :  0.00% :                4 
            seqz :  0.00% :                2 
           csrrc :  0.00% :                0 
          csrrci :  0.00% :                0 
           csrrs :  0.00% :                0 
          csrrsi :  0.00% :                0 
           csrrw :  0.00% :                0 

Fig. 9. Instruction coverage results for the processor model plus the instruction extension library.  

 

 

 


