
Brief introduction to the 5 levels of
RISC-V processor verification

Kevin McDermott, Imperas Software

7 December 2021

Introduction

• RISC-V means many people are designing new processors, or modifying
source of processors

• For RISC-V anybody can be ‘an architecture licensee’

• And every core needs verifying… (its not like buying in pre-verified IP)

• Many people are new to CPU DV for the first time
• Traditionally done behind closed doors in commercial/proprietary companies

• This presentation aims to introduce the main approaches of CPU DV

• And discusses their pros and cons

December 21© Imperas Software Ltd.Page 2

Challenges in RISC-V CPU DV

• Feature selection and choices require serious consideration due to implications of
every choice

• Experienced architecture teams know the costs associated with every feature
• Every addition dramatically increases (doubles ?) verification & compounds verification complexity
• Costs of simple added feature can be huge – and unknown to inexperienced teams
• Adds schedule, resources, quality costs == big risks…

• No off-the-shelf toolkit available for DV of processors
• No EDA vendor has ‘RISC-V CPU DV kit’ product
• There are in-house proprietary solutions in CPU developers… Intel, AMD, Arm, …
• Building your own adds schedule, resources, quality costs – and risks

• Current SoC cost is 50% for HW DV (with CPUs bought in as proven IP)
• Developing own CPU adds huge DV incremental schedule, resources, quality challenges

December 21© Imperas Software Ltd.Page 3

Agenda

• RISC-V CPU HW DV approaches
1. “hello” test

2. Simple check

3. Trace-compare

4. Data-path lockstep-compare

5. Async lockstep-compare

Note that not all projects have the same requirements, schedule or verification
needs – so each projects DV needs may / will differ

December 21© Imperas Software Ltd.Page 4

1: ‘Hello World’ DV

June 2021© Imperas Software Ltd.Page 5

• “if I can get a program to run – then my DV is done… right?”

• “my DV challenge is sorted if I can get Linux to boot on my design…”

• Basically this level of DV is where developer feels if they can get their current compilation
of their current program to run (through one path) - then their silicon design job is done

• This may be fine for test chips, research, academic, hobbyists, but NOT for products

• The approach is often due to lack of knowledge or interest in quality, …

hello.elf RTL “hello”

‘Hello World’ DV

• This is not DV!

June 2021© Imperas Software Ltd.Page 6

Agenda

• RISC-V CPU HW DV approaches
1. “hello” test

2. Simple check

3. Trace-compare

4. Data-path lockstep-compare

5. Async lockstep-compare

December 21© Imperas Software Ltd.Page 7

Testbench
& RTL

2: Simple check
(use e.g. riscvOVPsim ISS from GitHub)

© Imperas Software Ltd.Page 8

• Run RTL DUT in testbench
• (no real testbench)

• Just runs the program

• Either
• Each test program checks its results =

go/no go test
• Prints message to log

• or writes bit to memory

• Or, then run ISS, write signature file
• Compare/diff file results (afterwards)

• This is the approach taken by RISCV
International for their architectural validation
(“compliance tests”)

file compare

Testbench
& RTL

December 21

2: Simple check
(use e.g. riscvOVPsim ISS from GitHub)

• Summary
• Very simple, needs basic ISS, and tool chains

• Free ISS: https://github.com/riscv-ovpsim

• Free compiler: https://github.com/Imperas/riscv-toolchains

• Basic bring up

• Good for simple test runs

• Basic functionality testing

• Still need accurate, configurable, version selectable, complete, reference model

• Not a robust DV solution

December 21© Imperas Software Ltd.Page 9

https://github.com/riscv-ovpsim
https://github.com/Imperas/riscv-toolchains

Agenda

• RISC-V CPU HW DV approaches
1. “hello” test

2. Simple check

3. Trace-compare

4. Data-path lockstep-compare

5. Async lockstep-compare

December 21© Imperas Software Ltd.Page 10

3: Entry Level DV: post-sim trace-compare
(use e.g. riscvOVPsimPlus ISS from OVPworld)

• Process
• use random generator to create tests

• during simulation of ISS write trace log file

• during simulation of RTL write trace log
file

• at the end of both runs run through
compare program to see failures

• Free riscvOVPsimPlus Includes Trace
and GDB interface

• Free ISS: https://www.ovpworld.org/riscvOVPsimPlus

© Imperas Software Ltd.Page 11 December 21

https://www.ovpworld.org/riscvOVPsimPlus

3: Entry Level DV: post-sim trace-compare
(use e.g. riscvOVPsimPlus ISS from OVPworld)

Summary

• Compares files created after test runs

• Can be signature, logging, or instruction trace

• Usually the easiest method to implement (dependent on tracing formats)
• Capture of program flow (monitor the PC)

• Capture of program data (monitor the Registers, Memory)

• Potentially very large data files

• Potential for wasteful execution (if early failure)

• Will not work for on async events, control flow, or hardware real time effects, MP, OoO, multi-issue, …

• Not a robust DV solution for commercial cores

• Can engage with Imperas for licenses of reference models and optional development to add customer own instructions,
CSR, behaviors

December 21Page 12 © Imperas Software Ltd.

Agenda

• RISC-V CPU HW DV approaches
1. “hello” test

2. Simple check

3. Trace-compare

4. Data-path lockstep-compare

5. Async lockstep-compare

December 21© Imperas Software Ltd.Page 13

4: Imperas Industrial Quality Sync DV
(data-path lockstep)

• Tandem lockstep run – both reference and
DUT run together in lock step

• Not very complex to obtain, set up

• Compare PC, CSRs, GPRs, other internal state
– instruction by instruction

• No requirement on data saving

• No requirement on known good results

• Will not work for async events and control
flow , … – it is all about the data flow

• [OpenHW evolved into using Async – see
later slides]

December 21Page 14 © Imperas Software Ltd.

Example flow:

Initial OpenHW flow

4: Imperas Industrial Quality Sync DV
(data-path lock-step)

Summary

• Instruction by instruction lockstep comparison (excludes async events)
• Comparison of execution flow
• Comparison of program data
• Comparison of programmers and internal state

• Immediate comparison
• Allows for debug introspection at point of failure – very powerful
• Does not waste execution cycles after failure

• Will not work for async events, control flow, or hardware real time effects, …

• Not too hard to develop & set up (depends on RTL tracer features)

• Lock-Step / Compare is by far the best and most efficient approach
• But does not address async events (see level #5)

• Need to engage with vendors such as Imperas for licenses of reference models and optional development to
add customer own instructions, CSR, behaviors

December 21Page 15 © Imperas Software Ltd.

Agenda

• RISC-V CPU HW DV approaches
1. “hello” test

2. Simple check

3. Trace-compare

4. Data-path lockstep-compare

5. Async lockstep-compare

December 21© Imperas Software Ltd.Page 16

5: Imperas Industrial Highest Quality Async DV
(async lockstep)

• Builds on & extends Industrial Quality Sync DV

• Adds focus on async capabilities

• Depending on design this can include: OoO, MP,
Debug mode, interrupts, multi-issue, …

• Example SystemVerilog Components
• tracer: Reports instructions for checking and register

writebacks

• step_and_compare: Manages the reference model and
checks functionality

• interrupt_assert: Properties for interrupt
coverage/checking

• debug_assert: Properties for debug coverage/checking

• Will be hard, complex, and expensive to get
working

• Challenge is extracting async info from micro-
architecture RTL pipeline

• See latest developments with RVVI and ImperasDV

December 21Page 17 © Imperas Software Ltd.

Example flow:

Current CV32E40P OpenHW flow
(Imperas model encapsulated in SystemVerilog)

Imperas Industrial Highest Quality Async DV
(async lockstep)

Summary

• Instruction by instruction lockstep comparison (includes async events)

• Comparison of execution flow, of program data, of programmers and internal state

• Immediate comparison

• Allows for debug introspection at point of failure – very powerful

• Does not waste execution cycles after failure

• Includes focus on async events, control flow, or hardware real time effects

• Can be hard to develop & set up (depends on RTL tracer features and pipeline understanding)
• See latest development for RVVI and ImperasDV

• Can be expensive in terms of time, resources, licenses and costs a lot per bug found
• But the bugs are even more expensive if not found early enough…

• Lockstep / Compare is by far the best and most efficient approach (industry ‘gold standard’)

December 21© Imperas Software Ltd.Page 18

Agenda

• RISC-V CPU HW DV approaches
1. “hello” test

2. Simple check

3. Trace-compare

4. Data-path lockstep-compare

5. Async lockstep-compare

• Summary

December 21© Imperas Software Ltd.Page 19

Agenda

• RISC-V CPU HW DV approaches

• Imperas RISC-V HW DV verification

December 21© Imperas Software Ltd.Page 20

Introducing ImperasDV

6-Dec-21© Imperas Software Ltd.Page 21

Agenda

• RISC-V CPU HW DV approaches

• Imperas RISC-V HW DV verification
• Reference model encapsulation

December 21© Imperas Software Ltd.Page 22

Main blocks in Imperas RISC-V CPU DV

December 21© Imperas Software Ltd.Page 23

Test bench / harness
control, sequencing,

compare
(SystemVerilog, C or C++)

(random)
Instruction test

generator

Functional
coverage

measurement

5 components of RISC-V CPU DV

• DUT subsystem with ‘tracer’

• (random) instruction test generator

• Functional coverage measurement

• Test bench / harness

• Imperas DV subsystem

Imperas DV subsystem

NOTE: ImperasDV can be used with SystemVerilog, C, C++, Verilator

RVVI
RISC-V

Imperas
reference

Model

ImperasDV

Encapsulation of Imperas
reference model

RISC-V
Core
RTL

(DUT)

Tracer
&

Control
(RVFI+

control/
RVVI)

Mem

bus/mem i/f

int gen

Evolving RVVI: RISC-V Verification Interface
(3 components, public open standard)
[driven by RISC-V DV usage]

• https://github.com/riscv-verification/RVVI

• RVVI-VLG
• 4 SystemVerilog Interfaces

• RVVI_state

• RVVI_control

• RVVI_io (Interrupts, Debug)

• RVVI_bus -(Data, Instruction Bus)

• RVVI-API
• C/C++

• SystemVerilog

• RVVI-VPI
• Virtual Peripheral Interfaces

• timers, interrupts, debug, random, printer/uart, …

• Verilog and C macros & examples

6-Dec-21© Imperas Software Ltd.Page 24

RISC-V
Core
RTL

(DUT)

Tracer
&

Control
(RVFI+

control/
RVVI)

RVVI
RISC-V

Imperas
reference

Model

ImperasDV

https://github.com/riscv-verification/RVVI

Key component is Reference Model

• RISC-V is highly
configurable &
extendable

• 160… Questions ?

• So it can get a little
…. complicated

December 21Page 25 © Imperas Software Ltd.

Imperas is the Reference

• Imperas provides full RISC-V Specification envelope model

• Industrial quality model /simulator of RISC-V processors for use in compliance,
verification and test development

• Complete, fully functional, configurable model / simulator

• All 32bit and 64bit features of ratified User and Privilege RISC-V specs

• Vector extension, versions 0.7.1, 0.8, 0.9, 1.0

• Bit Manipulation extension, versions 0.91, 0.92. 0.93, 1.0.0

• Hypervisor version 0.6.1

• K-Crypto Scalar version 0.7.1, 1.0.0

• Debug versions 0.13.2, 0.14, 1.0.0

• Model source included under Apache 2.0 open source license

• Used as reference by :

• Mellanox/Nvidia, Seagate, NSITEXE/Denso, Google Cloud, Chips Alliance, lowRISC,
OpenHW Group, Andes, Valtrix, SiFive, Codasip, MIPS, Nagra/Kudelski, Silicon Labs,
RISC-V Compliance Working Group, …

December 21Page 26

RISC-V
Reference
Model &
Simulator

http://www.imperas.com/riscv

Imperas is used as RISC-V Golden Reference Model

© Imperas Software Ltd.

http://www.imperas.com/riscv

Imperas Model extensibility

Imperas develops and maintains base model

• Base model implements RISC-V specification in full

• Fully configurable to select which ISA extensions

• Fully configurable to select which version of each ISA extension
• Updated very regularly as ISA extension specification versions change

• Fully configurable for all RISC-V specification options
• e.g. implemented optional CSRs, read only or read/write bits etc…

Imperas provides methodology to easily extend base model

• Templates to add new instructions

• Code fragment for adding functionality

• 100+ page user guide/reference manual with many examples
• Includes example extended processor model

December 21Page 27

RISC-V
Base Model

Imperas model is architected for
easy extension & maintenance

© Imperas Software Ltd.

User Extension:
custom

instructions
&

CSRs

• Separate source files and no duplication to
ensure easy maintenance

• Imperas or user can develop the extension

• User extension source can be proprietary

Agenda

• RISC-V CPU HW DV approaches

• Imperas RISC-V HW DV verification

• Summary

December 21© Imperas Software Ltd.Page 28

Summary

• RISC-V processor DV needs lock-step-compare to be of high quality
• Lock-step is the only way to verify asynchronous behaviors

• Need standards like RVVI to allow component reuse to be efficient
• For have several different cores, or evolving generations

• ImperasDV provides high quality processor verification for adoption within the
established SoC Design Verification (DV) flows based on UVM and SystemVerilog.

• Imperas is used as key technology in terms of reference model and DV
• All you need for high quality, cost-effective RISC-V processor DV… come talk to us

• Imperas: used as a reference by :
• Mellanox/Nvidia, Seagate, NSITEXE/Denso, Google Cloud, Chips Alliance, lowRISC, OpenHW

Group, Andes, Valtrix, SiFive, Codasip, MIPS, Nagra/Kudelski, Silicon Labs, RISC-V Compliance
Working Group, …

6-Dec-21© Imperas Software Ltd.Page 29

Thank you

info@imperas.com

www.imperas.com

www.OVPworld.org

For more information on ImperasDV stop by our RISC-V Booth or visit

www.imperas.com/ImperasDV

http://www.imperas.com/
http://www.ovpworld.org/
https://www.imperas.com/ImperasDV

