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Abstract— The increasing complexity of processors allied to 
the continuous technology shrink is making multicore-based 
systems more susceptible to soft errors. The high cost and time 
inherent to hardware-based fault injection approaches make the 
more efficient simulation-based fault injection frameworks 
crucial to test reliability. This paper proposes a fast, flexible fault 
injector framework which supports parallel instruction accurate 
simulation to boost up the fault injection process. Fault injection 
campaigns were performed on ARM processors, considering a 
Linux Kernel and benchmarks with up to 220 million object code 
instructions. Results have shown the injection of faults at speeds 
up to 1550 MIPS. This enables users to identify errors and 
exceptions according to different criteria and classifications. 

Keywords—component; soft error; fault injection simulation; 
multicore systems. 

I.  INTRODUCTION 

The increasing computing capacity of multicore 
components like processors and graphics processing units 
(GPUs) offers new opportunities for embedded and high 
performance computing (HPC) domains. The progressively 
growing computing capacity of multicore-based systems 
enables the efficient performance of complex application 
workloads at a lower power consumption compared to 
traditional single core solutions. Such efficiency and the ever-
increasing complexity of application workloads encourage 
industry to integrate more and more computing components 
into the same system. The number of computing components 
employed in large-scale HPC systems already exceeds a 
million cores [1], while 1000-cores on-chip platforms are 
available in the embedded community [2]. 

Beyond the massive number of cores, the increasing 
computing capacity, as well as the number of internal memory 
cells (e.g. registers, internal memory, etc,) inherent to 
emerging processor architectures, is making large-scale 
systems more vulnerable to both hard and soft errors [3], [4]. 
Moreover, to meet emerging performance and power 
requirements, the underlying processors usually run in 
aggressive clock frequencies and multiple voltage domains, 
increasing their susceptibility to soft errors, such as the ones 
caused by radiation effects. The occurrence of soft errors or 

Single Event Effects (SEEs) may cause critical failures on 
system behavior, which may lead to financial or human life 
losses as already reported in [5], [6]. While a rate of 280 soft 
errors per day has been observed during the flight of a 
spacecraft [7], electronic computing systems working at 
ground level are expected to experience at least one soft error 
per day in near future [8]. The growing susceptibility of 
multicore systems to SEEs necessarily calls for novel cost-
effective tools to assess the soft error resilience of underlying 
multicore components with complex software stacks 
(operating system-OS, drivers, etc.) early in the design phase. 

With this trend in mind, researchers are investigating new 
fault injector techniques as well as proposing new tools to 
evaluate the occurrence of SEEs in commercial state of the art 
processors. In this context, the use of virtual platform 
frameworks is attractive due to their simulation performance 
and design flexibility (i.e. support for a large number of 
component models, compilers, and debugging facilities). Due 
to the high simulation speed (typically at hundreds of MIPS), 
virtual platform simulators based on just in time (JIT) dynamic 
binary translation appear to have an advantage over event-
driven simulators. However, this simulation performance 
comes at the cost of limited microarchitecture exploration 
support and timing accuracy. The resulting scenario poses a 
major challenging question: can we rely on soft error analysis 
produced from JIT-based frameworks? 

To address the gap between the available fault injection 
tools and the industry requirements, this paper describes the 
development of a fault injector module (FIM) that was 
assembled with OVPsim [9], [10], which relies on JIT 
dynamic binary translation technology. Aiming at answering 
the above challenging question on JIT simulation credibility, 
the developed FIM was integrated into gem5 [11], which is an 
event-driven virtual platform framework that targets 
microarchitecture exploration. 

The main contributions of this work are the following: 

 Proposal of a fast and flexible fault injector 
framework, called OVPsim-FIM, which supports the 
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analysis of complex systems considering more than 
100 commercial processor models. 

 Soft error analysis consistency of the proposed 
OVPsim-FIM with respect to gem5 Full System 
Simulation. 

 The extensive OVPsim-FIM evaluation by using 
several and large scale benchmarks. 

The rest of this paper is organized as follows. Section II 
presents related works in simulation based fault injection 
frameworks developed on virtual platforms. The concepts and 
the main features of developed fault injection frameworks are 
described in Section III. In Section IV the performance 
efficiency of proposed framework is evaluated under a set of 
fault injection experiments, considering several benchmarks 
and processor architectures. Section V describes fault injection 
campaigns performed in ARM Cortex family processors. 
Afterwards, conclusions and perspectives are discussed in 
Section VI. 

II. RELATED WORKS IN VIRUTAL PLATFORM-BASED FAULT 

INJECTION SIMULATORS 

Early and fast soft error sensitivity evaluation is of utmost 
importance for better identification of most common source of 
errors (e.g. a single-bit error in a memory area), which may 
lead to either a simple data corruption or a serious system 
failure [2]. In this direction, Authors in [7] present the 
Relyzer, a hybrid simulation framework for SPARC core 
using Simics [8] and gem5 [9] simulators coupled with a 
pruning technique to reduce injected faults. In [10], a fault 
injection framework based on QEMU is proposed. Faults are 
injected in an X86 architecture running applications in a Real-
Time Operating System (RTEMS). During the experiment, 
8,000 faults were injected in 8.7 hours, given an average of 
less than one fault per second.  

More recently, authors in [11] propose the GeFIN tool, a 
gem5-based fault injection framework. In this work faults 
were injected, randomly in time, in general-purpose registers, 
caches control registers, and other components. The 
experimental setup includes only the execution of 10 bare 
metal benchmarks selected from the MiBench [12]. 

Most reviewed approaches consider only small scenarios 
and a single-core processor or specific ISA [7]. Exploration of 
soft error reliability of single-core architectures has been 
successfully supported over the last decades. However, the 
assessment of multicore architecture soft error resilience 
strongly requires complementary modelling and simulation 
mechanisms to manage other aspects such as resource sharing, 
memory allocation and data dependencies. Further, such 
works typically report best-case simulation performances of 2-
3 MIPS, allowing 33 fault injections per second considering a 
supercomputer [7].  

Different from reviewed works, reported fault injection 
analysis include more than 1.1 million fault campaigns 
varying the number of CPU cores of an ARM processor, 
executing a Linux Kernel and large scale and realistic 
benchmark applications targeting high performance systems. 
Moreover, this work is the first that reports and discusses the 

soft error analysis consistency of a JIT-based VP simulator 
against an event-driven full system simulator. 

III. GEM5-FIM AND OVPSIM-FIM SIMULATORS 

The gem5 simulator [11] was selected among the available 
cycle-accurate simulators due to its open and free availability 
as well as its support for the ARM Cortex-A architectures with 
three execution models. Additionally, it is a well-known 
simulator used in many research projects, which increases its 
acceptability within the community. The proposed gem5-FIM 
is responsible for creating and injecting faults, capturing 
unexpected events and the required information (e.g. 
instruction count, memory dump) used to generate detailed 
soft error analysis. For the sake of simplicity, any kind of 
application behavior divergence is considered as a soft error, 
which is classified according to [18]. 

We model SEEs through single bit-flips generated 
randomly in any available general purpose register during the 
software stack execution (i.e. OS, drivers and applications). 
Intentionally, we do not consider faults injected directly into 
OS routines, nevertheless OS calls may affect the application 
behavior. The implemented approach analyses the application 
behavior considering the whole system execution 
environment, i.e. processor model, optimization flags, 
compiler, cross-compiler, libraries, and a Linux kernel 
(3.12.0) built with the same cross-compiler.  

As mentioned before, the gem5 is an event-based cycle-
accurate simulator, enabling a finer granularity when selecting 
the fault insertion time. In this regard, the proposed 
implementation uses the instruction count as a temporal 
reference. The gem5 simulator employs Python scripts to 
control the simulation flow and C++ modules to the 
microarchitectural simulation. Fig. 1 displays the main FIM 
components. 

 
Fig. 1 gem5 fault injection module main components. 

Differently from OVPsim-FIM, the gem5 detailed 
simulator provides sophisticated memory timing and cache 
coherency protocols. However, the gem5 atomic simulator 
emulates the memory and cache using a single tick access 
mechanism, therefore slightly differing from the gem5 
detailed simulator regarding the execution time and cache 
activity. The complex timing associated with cache misses or 
the wrong branch speculations leads to pipeline flushes. Thus, 
the speculatively executed or partially executed instructions 
are discarded, and the pipeline will fetch new instructions. 
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This event will re-execute instructions and overwrite the 
current pipeline context including any effect arising from a 
fault injection in this period. 

OVPsim does not provide microarchitectural modeling 
(e.g. pipeline, decoder, reorder buffer) and so it does not 
emulate a register renaming hardware. Reads and writes are 
always guaranteed to be correct in an instruction-accurate 
simulator (i.e. the previous instruction always completes 
before the next start), thus removing the data hazards 
originating from the pipeline access to data before the write-
back stage update. The gem5 atomic simulator models some 
microarchitectural aspects, for instance, not including the 
reorder buffer or the renaming register module. Thus, inner 
transactions occur in a single tick, and consequently every 
pipeline stage completes before the next instruction, similarly 
to OVPsim. 

A. Fault Injection Simulation Flow 

Fig. 2 illustrates a five-phase fault injection flow, which is 
supported in both simulators. In the first phase, named Golden 
Execution, is the compilation and execution of the application 
in an unchanged simulator to verify its correctness and also to 
extract the essential information (e.g. internal state and 
memory map).  

Golden 
execution

Fault setup 
and creation

Error 
report 

OVPSim-FIM

Error analysis

Harvest
1 2 3

4

# faults

5  
Fig. 2 Simulation phases to accomplish one fault campaign. 

The second phase involves fault creation. In Fig. 1 (B), as 
previously reported, we deploy a random generation scheme 
(i.e. randomly selecting the insertion time, the location, and 
the register bit) since it covers most faults at a low 
computational cost. Our solution selects a random injection 
time based on the final instruction count extracted in phase 1, 
the locations (e.g. registers, memory address) are also defined 
randomly. This solution requires a bit pattern, considering a 
32-bit processor such as the adopted Cortex A-9, all bits are 
set to ‘0' except the targeted bit. For instance, to change the 
second least significant bit of a given register requires the 
0x00000002 pattern.   

The next phase includes the fault injection campaign. At 
the first step, the fault monitor, Fig. 1 (A), verifies the number 
of executed instructions until it reaches the fault injection 
insertion time. Triggering the fault injector, Fig. 1 (E). and at 
this moment accessing the targeted register. The bit pattern 
over the current value using an exclusive OR operation 
(XOR). As an example, suppose that the original value is 
0x00000009, and we aim to flip the fourth least significant bit. 
For this purpose, the module performs a XOR operation 
between the first 0x00000009 and the pattern 0x00000008, 
which generates 0x00000001 as expected result from flipping 
the fourth bit.  

After fault insertion, the application behavior may lead to 
processor or OS exceptions, which may arise in simulation 

driving the simulation to a halt. To observe this behavior, we 
deploy a component, Fig. 1 (D), to deal with such unexpected 
events at run-time. In some cases, the error affects the 
application control flow without triggering an immediate 
error, exception, or exiting the application (i.e. the application 
enters into an infinite loop). To reduce the simulation 
overhead, in this case, we consider applications as incorrect 
after executing twice the number of instructions executed in its 
faultless Golden Execution. 

The error analysis (phase 4) comprises comparisons of 
each application running under fault injection with the golden 
run to detect arising errors, Fig. 1 (C). For the purpose of this 
work, we consider an error when a fault leads the application 
to inconsistent control flow behavior or the data results. 
Additionally, we deploy the error classification proposed in 
[18] with five groups: 

 Vanished, no fault traces are left;  

 Application Output Not Affected (ONA), the 
resulting memory is not modified. However, one or 
more remaining bits of the architectural state are 
incorrect;  

 Application output mismatch (OMM), the 
application terminates without any error indication. 
However, the resulting memory is affected; 

 Unexpected termination (UT), the application 
terminates abnormally with an error indication;  

 Hang, the application does not finish, requiring a 
preemptive remove. 

The final phase consolidates the set of injected faults 
information in a single report. Also, in large-scale fault 
injection campaigns, this phase also handles the 
synchronization between independent simulations. 

IV. EXPERIMENTAL SETUP  

The experimental setup aims to study the precision of 
OVPsim-FIM (instruction-accurate) against the gem5-FIM 
(cycle-accurate). It comprises the evaluation of six 
applications displayed on TABLE I and selected from among 
the Rodinia Benchmark suite [19].  

TABLE I - EXPERIMENTAL SETUP APPLICATIONS. 

 

The applications are built using an almost identical 
environment configuration to ensure the fairest comparison as 
possible. Both simulation flows are generated using the same 
optimization flags, compiler, cross-compiler, libraries, and a 
Linux kernel (3.12.0) build with the same cross-compiler. As 
aforementioned the gem5 has three execution models, 

# Name Domain 
A bfs Graph Algorithms 
B hotspot Physics Simulation 
C hotspot3d Physics Simulation 
D Needleman-Wunsch (NW) Bioinformatics 
E srad v1 Image Processing 
F streamcluster Data Mining 
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however, we deploy only the most and least precise models, 
respectively the detailed and atomic models. Thus, a given 
application is executed in three FIM modes: One using 
OVPsim and the two gem5 – atomic and detailed – models. 
The slowest simulator mode (i.e. the gem5 detailed model) 
bounds the fault injection campaign length even when 
employing a high-performance computer (HPC), since the 
required simulation hours for a larger fault injection campaign 
is infeasible. For instance, the application hotspot3D using the 
smallest input matrix available (i.e. 64x64x64) executes 
approximately 220 million instructions to until complete. 
Their simulation time (using the latest Intel i7) for the 
OVPsim, gem5 atomic and gem5 detailed respectively are: 
couple seconds, 136 seconds, and 1438 seconds. When 
regarding an 8000 fault injection campaign, the most 
optimistic total simulation time estimates is 3600 hours, where 
the OVPsim-FIM accounts for only 2.2 hours, the gem5-FIM 
atomic for 302 hours, and the 3296 remaining hours just for 
the gem5-FIM detailed. Observe that we do not consider the 
Golden Execution phase, eventual synchronizations, job 
scheduling, storage access or speed degradation due to other 
processes in simultaneous multithreading processors. 
Additionally, the simulation time does not take in account the 
Linux boot, which is always restored from a checkpoint. This 
work exceeds 100 thousand simulation hours in the HPC 
cluster ALICE from the University of Leicester which counts 
with more than 5,000 processors. 

V. RESULTS 

The application fault injection campaign extends to 8,000 
fault injections for the three FIM modes using the flow 
described in the previous section. Thus, it executes 24,000 
times randomly assigned faults running on independent 
platforms. Fig. 3 displays the six-application error analysis 
using the five classifications proposed by Cho et al. in the 
three FIM modes OVPsim, gem5 Atomic, and gem5 Detailed 
respectively. 

 
Fig. 3 Error Analysis for the six application over the three FIM modes. The 

application letter is referred in TABLE I. 

 The gem5 Detailed presents a distinct behavior for all 
investigated applications, revealing a noticeable higher fault 
masking rate than the OVPsim and the gem5 Atomic. The 
register file internal organization could cause this masking 
effect as it tries to mimic the register renaming hardware 
technique when adopting the most accurate model. The 
mapping will overwrite some injected bit-flips in the registers 
before the next read, thus suppressing any possible fault effect 
in the software. The streamcluster application has the smaller 
deviation in comparison with the detailed model. The 
streamcluster algorithm originates from the data mining 
domain, and a significant percentage of its operations consists 
of reads [20]. Consequently, reducing the possible of read-
after-write hazards in the register file, thus approximating both 
OVPSIM-FIM and gem5-FIM detailed. 

Fig. 4 isolates each error classification in the individual 
application and displays the two relative errors on top: 
OVPsim versus gem5 Atomic (dotted blue) and OVPsim 
versus gem5 Detailed (dashed green). In the first three 
benchmarks (i.e. A, B, and C) the OVPSIM-FIM response is 
more closely related to the gem5 Atomic. In contrast, the latter 
three applications achieve a greater proximity with the gem5 
Detailed when considering the applications and the exit 
statement (i.e. without being externally finished). 

VI. CONCLUSION 

This paper evaluates the consistency of using a JIT-based 
fault injection simulator to perform soft error reliability 
analysis when compared to an event-driven full system 
simulator. Although the percentage of errors due to fault 
injection is in some cases higher than 20% when compared to 
the reference gem5-FIM, the authors conclude that these errors 
are acceptable and are not a hindrance to evaluating soft error 
at early design phases. Further, given the remarkable achieved 
speedup, the utilization of JIT-based FIM appears promising 
since it can also be used for comparison among different 
processor models, ISAs and benchmarks. 
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Fig. 4 Individual error classification for the six benchmark applications. The application letter is referred in TABLE I. 


