

 www.embedded-world.eu

Fast Fault Injection to Evaluate Multicore Systems
Soft Error Reliability

Felipe Rosa1, Luciano Ost2, Ricardo Reis1, Simon Davidmann3, Larry Lapides3

1UFRGS - Instituto de Informatica - PGMicro/PPGC
2Department of Engineering - University of Leicester

3Imperas Software Ltd.
{frdarosa, reis}@inf.ufrgs.br, luciano.ost@le.ac.uk, {simond, larryl}@imperas.com

Abstract— The increasing complexity of processors allied to
the continuous technology shrink is making multicore-based
systems more susceptible to soft errors. The high cost and time
inherent to hardware-based fault injection approaches make the
more efficient simulation-based fault injection frameworks
crucial to test reliability. This paper proposes a fast, flexible fault
injector framework which supports parallel instruction accurate
simulation to boost up the fault injection process. Fault injection
campaigns were performed on ARM processors, considering a
Linux Kernel and benchmarks with up to 220 million object code
instructions. Results have shown the injection of faults at speeds
up to 1550 MIPS. This enables users to identify errors and
exceptions according to different criteria and classifications.

Keywords—component; soft error; fault injection simulation;
multicore systems.

I. INTRODUCTION

The increasing computing capacity of multicore
components like processors and graphics processing units
(GPUs) offers new opportunities for embedded and high
performance computing (HPC) domains. The progressively
growing computing capacity of multicore-based systems
enables the efficient performance of complex application
workloads at a lower power consumption compared to
traditional single core solutions. Such efficiency and the ever-
increasing complexity of application workloads encourage
industry to integrate more and more computing components
into the same system. The number of computing components
employed in large-scale HPC systems already exceeds a
million cores [1], while 1000-cores on-chip platforms are
available in the embedded community [2].

Beyond the massive number of cores, the increasing
computing capacity, as well as the number of internal memory
cells (e.g. registers, internal memory, etc,) inherent to
emerging processor architectures, is making large-scale
systems more vulnerable to both hard and soft errors [3], [4].
Moreover, to meet emerging performance and power
requirements, the underlying processors usually run in
aggressive clock frequencies and multiple voltage domains,
increasing their susceptibility to soft errors, such as the ones
caused by radiation effects. The occurrence of soft errors or

Single Event Effects (SEEs) may cause critical failures on
system behavior, which may lead to financial or human life
losses as already reported in [5], [6]. While a rate of 280 soft
errors per day has been observed during the flight of a
spacecraft [7], electronic computing systems working at
ground level are expected to experience at least one soft error
per day in near future [8]. The growing susceptibility of
multicore systems to SEEs necessarily calls for novel cost-
effective tools to assess the soft error resilience of underlying
multicore components with complex software stacks
(operating system-OS, drivers, etc.) early in the design phase.

With this trend in mind, researchers are investigating new
fault injector techniques as well as proposing new tools to
evaluate the occurrence of SEEs in commercial state of the art
processors. In this context, the use of virtual platform
frameworks is attractive due to their simulation performance
and design flexibility (i.e. support for a large number of
component models, compilers, and debugging facilities). Due
to the high simulation speed (typically at hundreds of MIPS),
virtual platform simulators based on just in time (JIT) dynamic
binary translation appear to have an advantage over event-
driven simulators. However, this simulation performance
comes at the cost of limited microarchitecture exploration
support and timing accuracy. The resulting scenario poses a
major challenging question: can we rely on soft error analysis
produced from JIT-based frameworks?

To address the gap between the available fault injection
tools and the industry requirements, this paper describes the
development of a fault injector module (FIM) that was
assembled with OVPsim [9], [10], which relies on JIT
dynamic binary translation technology. Aiming at answering
the above challenging question on JIT simulation credibility,
the developed FIM was integrated into gem5 [11], which is an
event-driven virtual platform framework that targets
microarchitecture exploration.

The main contributions of this work are the following:

 Proposal of a fast and flexible fault injector
framework, called OVPsim-FIM, which supports the

 www.embedded-world.eu

analysis of complex systems considering more than
100 commercial processor models.

 Soft error analysis consistency of the proposed
OVPsim-FIM with respect to gem5 Full System
Simulation.

 The extensive OVPsim-FIM evaluation by using
several and large scale benchmarks.

The rest of this paper is organized as follows. Section II
presents related works in simulation based fault injection
frameworks developed on virtual platforms. The concepts and
the main features of developed fault injection frameworks are
described in Section III. In Section IV the performance
efficiency of proposed framework is evaluated under a set of
fault injection experiments, considering several benchmarks
and processor architectures. Section V describes fault injection
campaigns performed in ARM Cortex family processors.
Afterwards, conclusions and perspectives are discussed in
Section VI.

II. RELATED WORKS IN VIRUTAL PLATFORM-BASED FAULT

INJECTION SIMULATORS

Early and fast soft error sensitivity evaluation is of utmost
importance for better identification of most common source of
errors (e.g. a single-bit error in a memory area), which may
lead to either a simple data corruption or a serious system
failure [2]. In this direction, Authors in [7] present the
Relyzer, a hybrid simulation framework for SPARC core
using Simics [8] and gem5 [9] simulators coupled with a
pruning technique to reduce injected faults. In [10], a fault
injection framework based on QEMU is proposed. Faults are
injected in an X86 architecture running applications in a Real-
Time Operating System (RTEMS). During the experiment,
8,000 faults were injected in 8.7 hours, given an average of
less than one fault per second.

More recently, authors in [11] propose the GeFIN tool, a
gem5-based fault injection framework. In this work faults
were injected, randomly in time, in general-purpose registers,
caches control registers, and other components. The
experimental setup includes only the execution of 10 bare
metal benchmarks selected from the MiBench [12].

Most reviewed approaches consider only small scenarios
and a single-core processor or specific ISA [7]. Exploration of
soft error reliability of single-core architectures has been
successfully supported over the last decades. However, the
assessment of multicore architecture soft error resilience
strongly requires complementary modelling and simulation
mechanisms to manage other aspects such as resource sharing,
memory allocation and data dependencies. Further, such
works typically report best-case simulation performances of 2-
3 MIPS, allowing 33 fault injections per second considering a
supercomputer [7].

Different from reviewed works, reported fault injection
analysis include more than 1.1 million fault campaigns
varying the number of CPU cores of an ARM processor,
executing a Linux Kernel and large scale and realistic
benchmark applications targeting high performance systems.
Moreover, this work is the first that reports and discusses the

soft error analysis consistency of a JIT-based VP simulator
against an event-driven full system simulator.

III. GEM5-FIM AND OVPSIM-FIM SIMULATORS

The gem5 simulator [11] was selected among the available
cycle-accurate simulators due to its open and free availability
as well as its support for the ARM Cortex-A architectures with
three execution models. Additionally, it is a well-known
simulator used in many research projects, which increases its
acceptability within the community. The proposed gem5-FIM
is responsible for creating and injecting faults, capturing
unexpected events and the required information (e.g.
instruction count, memory dump) used to generate detailed
soft error analysis. For the sake of simplicity, any kind of
application behavior divergence is considered as a soft error,
which is classified according to [18].

We model SEEs through single bit-flips generated
randomly in any available general purpose register during the
software stack execution (i.e. OS, drivers and applications).
Intentionally, we do not consider faults injected directly into
OS routines, nevertheless OS calls may affect the application
behavior. The implemented approach analyses the application
behavior considering the whole system execution
environment, i.e. processor model, optimization flags,
compiler, cross-compiler, libraries, and a Linux kernel
(3.12.0) built with the same cross-compiler.

As mentioned before, the gem5 is an event-based cycle-
accurate simulator, enabling a finer granularity when selecting
the fault insertion time. In this regard, the proposed
implementation uses the instruction count as a temporal
reference. The gem5 simulator employs Python scripts to
control the simulation flow and C++ modules to the
microarchitectural simulation. Fig. 1 displays the main FIM
components.

Fig. 1 gem5 fault injection module main components.

Differently from OVPsim-FIM, the gem5 detailed
simulator provides sophisticated memory timing and cache
coherency protocols. However, the gem5 atomic simulator
emulates the memory and cache using a single tick access
mechanism, therefore slightly differing from the gem5
detailed simulator regarding the execution time and cache
activity. The complex timing associated with cache misses or
the wrong branch speculations leads to pipeline flushes. Thus,
the speculatively executed or partially executed instructions
are discarded, and the pipeline will fetch new instructions.

 www.embedded-world.eu

This event will re-execute instructions and overwrite the
current pipeline context including any effect arising from a
fault injection in this period.

OVPsim does not provide microarchitectural modeling
(e.g. pipeline, decoder, reorder buffer) and so it does not
emulate a register renaming hardware. Reads and writes are
always guaranteed to be correct in an instruction-accurate
simulator (i.e. the previous instruction always completes
before the next start), thus removing the data hazards
originating from the pipeline access to data before the write-
back stage update. The gem5 atomic simulator models some
microarchitectural aspects, for instance, not including the
reorder buffer or the renaming register module. Thus, inner
transactions occur in a single tick, and consequently every
pipeline stage completes before the next instruction, similarly
to OVPsim.

A. Fault Injection Simulation Flow

Fig. 2 illustrates a five-phase fault injection flow, which is
supported in both simulators. In the first phase, named Golden
Execution, is the compilation and execution of the application
in an unchanged simulator to verify its correctness and also to
extract the essential information (e.g. internal state and
memory map).

Golden
execution

Fault setup
and creation

Error
report

OVPSim-FIM

Error analysis

Harvest
1 2 3

4

faults

5
Fig. 2 Simulation phases to accomplish one fault campaign.

The second phase involves fault creation. In Fig. 1 (B), as
previously reported, we deploy a random generation scheme
(i.e. randomly selecting the insertion time, the location, and
the register bit) since it covers most faults at a low
computational cost. Our solution selects a random injection
time based on the final instruction count extracted in phase 1,
the locations (e.g. registers, memory address) are also defined
randomly. This solution requires a bit pattern, considering a
32-bit processor such as the adopted Cortex A-9, all bits are
set to ‘0' except the targeted bit. For instance, to change the
second least significant bit of a given register requires the
0x00000002 pattern.

The next phase includes the fault injection campaign. At
the first step, the fault monitor, Fig. 1 (A), verifies the number
of executed instructions until it reaches the fault injection
insertion time. Triggering the fault injector, Fig. 1 (E). and at
this moment accessing the targeted register. The bit pattern
over the current value using an exclusive OR operation
(XOR). As an example, suppose that the original value is
0x00000009, and we aim to flip the fourth least significant bit.
For this purpose, the module performs a XOR operation
between the first 0x00000009 and the pattern 0x00000008,
which generates 0x00000001 as expected result from flipping
the fourth bit.

After fault insertion, the application behavior may lead to
processor or OS exceptions, which may arise in simulation

driving the simulation to a halt. To observe this behavior, we
deploy a component, Fig. 1 (D), to deal with such unexpected
events at run-time. In some cases, the error affects the
application control flow without triggering an immediate
error, exception, or exiting the application (i.e. the application
enters into an infinite loop). To reduce the simulation
overhead, in this case, we consider applications as incorrect
after executing twice the number of instructions executed in its
faultless Golden Execution.

The error analysis (phase 4) comprises comparisons of
each application running under fault injection with the golden
run to detect arising errors, Fig. 1 (C). For the purpose of this
work, we consider an error when a fault leads the application
to inconsistent control flow behavior or the data results.
Additionally, we deploy the error classification proposed in
[18] with five groups:

 Vanished, no fault traces are left;

 Application Output Not Affected (ONA), the
resulting memory is not modified. However, one or
more remaining bits of the architectural state are
incorrect;

 Application output mismatch (OMM), the
application terminates without any error indication.
However, the resulting memory is affected;

 Unexpected termination (UT), the application
terminates abnormally with an error indication;

 Hang, the application does not finish, requiring a
preemptive remove.

The final phase consolidates the set of injected faults
information in a single report. Also, in large-scale fault
injection campaigns, this phase also handles the
synchronization between independent simulations.

IV. EXPERIMENTAL SETUP

The experimental setup aims to study the precision of
OVPsim-FIM (instruction-accurate) against the gem5-FIM
(cycle-accurate). It comprises the evaluation of six
applications displayed on TABLE I and selected from among
the Rodinia Benchmark suite [19].

TABLE I - EXPERIMENTAL SETUP APPLICATIONS.

The applications are built using an almost identical
environment configuration to ensure the fairest comparison as
possible. Both simulation flows are generated using the same
optimization flags, compiler, cross-compiler, libraries, and a
Linux kernel (3.12.0) build with the same cross-compiler. As
aforementioned the gem5 has three execution models,

Name Domain
A bfs Graph Algorithms
B hotspot Physics Simulation
C hotspot3d Physics Simulation
D Needleman-Wunsch (NW) Bioinformatics
E srad v1 Image Processing
F streamcluster Data Mining

 www.embedded-world.eu

however, we deploy only the most and least precise models,
respectively the detailed and atomic models. Thus, a given
application is executed in three FIM modes: One using
OVPsim and the two gem5 – atomic and detailed – models.
The slowest simulator mode (i.e. the gem5 detailed model)
bounds the fault injection campaign length even when
employing a high-performance computer (HPC), since the
required simulation hours for a larger fault injection campaign
is infeasible. For instance, the application hotspot3D using the
smallest input matrix available (i.e. 64x64x64) executes
approximately 220 million instructions to until complete.
Their simulation time (using the latest Intel i7) for the
OVPsim, gem5 atomic and gem5 detailed respectively are:
couple seconds, 136 seconds, and 1438 seconds. When
regarding an 8000 fault injection campaign, the most
optimistic total simulation time estimates is 3600 hours, where
the OVPsim-FIM accounts for only 2.2 hours, the gem5-FIM
atomic for 302 hours, and the 3296 remaining hours just for
the gem5-FIM detailed. Observe that we do not consider the
Golden Execution phase, eventual synchronizations, job
scheduling, storage access or speed degradation due to other
processes in simultaneous multithreading processors.
Additionally, the simulation time does not take in account the
Linux boot, which is always restored from a checkpoint. This
work exceeds 100 thousand simulation hours in the HPC
cluster ALICE from the University of Leicester which counts
with more than 5,000 processors.

V. RESULTS

The application fault injection campaign extends to 8,000
fault injections for the three FIM modes using the flow
described in the previous section. Thus, it executes 24,000
times randomly assigned faults running on independent
platforms. Fig. 3 displays the six-application error analysis
using the five classifications proposed by Cho et al. in the
three FIM modes OVPsim, gem5 Atomic, and gem5 Detailed
respectively.

Fig. 3 Error Analysis for the six application over the three FIM modes. The

application letter is referred in TABLE I.

 The gem5 Detailed presents a distinct behavior for all
investigated applications, revealing a noticeable higher fault
masking rate than the OVPsim and the gem5 Atomic. The
register file internal organization could cause this masking
effect as it tries to mimic the register renaming hardware
technique when adopting the most accurate model. The
mapping will overwrite some injected bit-flips in the registers
before the next read, thus suppressing any possible fault effect
in the software. The streamcluster application has the smaller
deviation in comparison with the detailed model. The
streamcluster algorithm originates from the data mining
domain, and a significant percentage of its operations consists
of reads [20]. Consequently, reducing the possible of read-
after-write hazards in the register file, thus approximating both
OVPSIM-FIM and gem5-FIM detailed.

Fig. 4 isolates each error classification in the individual
application and displays the two relative errors on top:
OVPsim versus gem5 Atomic (dotted blue) and OVPsim
versus gem5 Detailed (dashed green). In the first three
benchmarks (i.e. A, B, and C) the OVPSIM-FIM response is
more closely related to the gem5 Atomic. In contrast, the latter
three applications achieve a greater proximity with the gem5
Detailed when considering the applications and the exit
statement (i.e. without being externally finished).

VI. CONCLUSION

This paper evaluates the consistency of using a JIT-based
fault injection simulator to perform soft error reliability
analysis when compared to an event-driven full system
simulator. Although the percentage of errors due to fault
injection is in some cases higher than 20% when compared to
the reference gem5-FIM, the authors conclude that these errors
are acceptable and are not a hindrance to evaluating soft error
at early design phases. Further, given the remarkable achieved
speedup, the utilization of JIT-based FIM appears promising
since it can also be used for comparison among different
processor models, ISAs and benchmarks.

ACKNOWLEDGMENT

This research used the ALICE High Performance
Computing Facility at the University of Leicester. The authors
would like to thank Imperas Software Ltd. and Open Virtual
Platforms for their support and access to their models and
simulator.

 www.embedded-world.eu

References
[1] “TOP500 Supercomputer.” [Online]. Available:

https://www.top500.org/. [Accessed: 05-Mar-2017].
[2] G. Abich, M. G. Mandelli, F. R. Rosa, F. Moraes, L. Ost, and R. Reis,

“Extending FreeRTOS to support dynamic and distributed mapping in
multiprocessor systems,” in 2016 IEEE International Conference on
Electronics, Circuits and Systems (ICECS), 2016, pp. 712–715.

[3] M. Snir et al., “Addressing Failures in Exascale Computing,” Int J High
Perform Comput Appl, vol. 28, no. 2, pp. 129–173, May 2014.

[4] R. C. Baumann, “Radiation-induced soft errors in advanced
semiconductor technologies,” IEEE Trans. Device Mater. Reliab., vol.
5, no. 3, pp. 305–316, Sep. 2005.

[5] “Toyota Case: Single Bit Flip That Killed | EE Times,” EETimes.
[Online]. Available:
http://www.eetimes.com/document.asp?doc_id=1319903. [Accessed:
18-Feb-2015].

[6] E. Normand, “Single event upset at ground level,” IEEE Trans. Nucl.
Sci., vol. 43, no. 6, pp. 2742–2750, Dec. 1996.

[7] G. M. Swift and S. M. Guertin, “In-flight observations of multiple-bit
upset in DRAMs,” IEEE Trans. Nucl. Sci., vol. 47, no. 6, pp. 2386–
2391, Dec. 2000.

[8] T. Granlund, B. Granbom, and N. Olsson, “Soft error rate increase for
new generations of SRAMs,” IEEE Trans. Nucl. Sci., vol. 50, no. 6, pp.
2065–2068, Dec. 2003.

[9] F. Rosa, F. Kastensmidt, R. Reis, and L. Ost, “A fast and scalable fault
injection framework to evaluate multi/many-core soft error reliability,”
in 2015 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFTS), 2015, pp. 211–214.

[10] “Open Virtual Platforms (OVP).” [Online]. Available:
http://www.ovpworld.org/.

[11] N. Binkert et al., “The Gem5 Simulator,” SIGARCH Comput Arch.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[12] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Exploiting Application-level Fault Equivalence to Analyze Application

Resiliency to Transient Faults,” in Proceedings of the Seventeenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, New York, NY, USA, 2012, pp.
123–134.

[13] P. S. Magnusson et al., “Simics: A Full System Simulation Platform,”
Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[14] F. de Aguiar Geissler, F. Lima Kastensmidt, and J. E. Pereira Souza,
“Soft error injection methodology based on QEMU software platform,”
in Test Workshop - LATW, 2014 15th Latin American, 2014, pp. 1–5.

[15] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas,
“GemFI: A Fault Injection Tool for Studying the Behavior of
Applications on Unreliable Substrates,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2014,
pp. 622–629.

[16] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith,
“Unprotected Computing: A Large-Scale Study of DRAM Raw Error
Rate on a Supercomputer,” in SC16: International Conference for High
Performance Computing, Networking, Storage and Analysis, Los
Alamitos, CA, USA, pp. 645–655.

[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in 2001 IEEE International Workshop on Workload
Characterization, 2001. WWC-4, 2001, pp. 3–14.

[18] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for robust
system design,” in 2013 50th ACM / EDAC / IEEE Design Automation
Conference (DAC), 2013, pp. 1–10.

[19] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in 2009 IEEE International Symposium on Workload
Characterization (IISWC), 2009, pp. 44–54.

[20] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, New York, NY, USA, 2008, pp. 72–81.

(A) BFS

(B) hotspot

(C) hotspot 3D

(D) nw

(E) srad_v1

(F) streamcluster

Fig. 4 Individual error classification for the six benchmark applications. The application letter is referred in TABLE I.

