
www.embedded-world.eu 
 

 
Using Virtual Prototypes to Improve the Traceability 

of Critical Embedded Systems 
Jean-Michel Fernandez 

Embedded Systems 
Magillem Design Services 

Paris, France 
fernandez@magillem.com 

Larry Lapides 
Embedded Software 

Imperas Software 
Oxfordshire, United Kingdom 

larryl@imperas.com
 
 

Abstract — This paper explains how the combination of 
innovative traceability techniques with advanced Virtual 
Prototyping execution environment helps detecting and locating 
critical embedded system bugs located at the frontier of Hardware 
and Software, by tracing the dependencies between all the objects 
of any kind such as requirements, specification, documentation, 
hardware or software meta-data. 
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I.  INTRODUCTION 
Designing critical systems requires compliance with 

domain specific safety standards such as DO-178B/C for 
avionics or ISO-26262 for automotive, which in turn require 
strong traceability from the functional specification down to 
the implementation of the complete system. Traceability is one 
of the essential activities of requirements management: it is 
used to ensure that the right product is being built at each phase 
of the embedded systems development life cycle, to measure 
the progress of that development and to reduce the effort 
required to determine the impacts of requested changes. 

Efficient tools exist to trace requirements by creating and 
managing specification-implementation links. But to 
unambiguously ensure the completeness of a requirement, 
these tools usually miss the links between the hardware objects  
(such as an interrupt signal or a register), the software objects 
(such as a safe routine) and their execution state. Moreover, in 
order to record the execution state of an object, this object must 
be observable. 

Adding a link to the design execution on the physical 
prototyping board may come too late in the design cycle to 
capture functional specification or requirements errors. 
Moreover, some of the objects (register value, interrupt signal) 
may not be observable on the physical prototype, or corner 
case states may not be easily achievable, leading to the inability 
to create or observe an error.  

This paper describes how Virtual Prototypes (VPs) can be 
used to create the missing link between the functional 
requirements and their validation. First it describes how VPs 
can help verifying functional requirements. Then it details how 
traceability techniques can be combined with VPs to improve 
the debug of bugs that sit at the frontier between the Hardware 
(HW) and the embedded Software (SW). Last it shows on a 
typical use case how these combined techniques could help to 
quickly locate a system bug and discusses improvement areas 
of this work. 

 

II. VIRTUAL PROTOTYPES 

A. Verifying functional requirements 
Functional requirements come from a usually informal 

analysis process to turn raw, incomplete requirements as 
elicited from the system stakeholders into a structured system 
requirements specification document. Various techniques exist 
to verify functional requirements ranging from manual reviews 
and inspection to formal verification and validation (V&V), 
using or not prototype or test designs.  

The Validation process ensures that the system being 
developed or changed will satisfy its stakeholders, and that the 
system requirements specifications meet the stakeholders’ 
goals and requirements. The Verification process ensures that 
each step followed in the process of building the embedded 
system (software and hardware) yields to the right product and 
that the requirement specifications are consistent with the 
refined implementation: functional model, accurate design, 
physical implementation. 

Prototyping is a common process to help stakeholders (end 
users and customers) discover problems by validating and 
verifying their requirements: it is more accessible than the 
system specification, it demonstrates the requirements, it is 
reusable and evolutive. It can take various forms ranging from 
a paper prototype of a computerized system to a formal 
executable model of the specifications. 



B. Using Virtual Prototypes 
VPs are fully functional software simulation models of 

complete hardware systems that can execute unmodified 
production binary code at near real time speed. VPs therefore 
enable early functional validation of embedded software on the 
target hardware platform, usually months before the physical 
prototype is available. In addition, because of the nature of 
simulation, VPs offer controllability, observability and 
flexibility. VPs are usually based on SystemC standard [1]. In 
addition to the simulation environment, VP tools provide the 
necessary debug, monitoring or analysis features; usually 
implemented in a non-intrusive manner, without modifying or 
instrumenting the production code. 

 

III. INTEGRATING SPECIFICATION, DESIGN AND 
DOCUMENTATION 

Magillem [3] tools use IP-XACT [2] as a pivot metadata to 
represent both HW and embedded SW. IP-XACT is a standard 
with a strong semantic that can be seen as a documentation 
format that references data from potentially multiple 
heterogeneous views. It was originally designed to represent 
Hardware components, but could equally be used to represent 
any object that communicates through interfaces. In addition, 
Magillem tools use a proprietary metadata to encompass all the 
standards and de-facto standard document formats based on 
XML such as DITA or Microsoft Office formats. XML-based 
formats (such as IP-XACT, DITA or Docx) allow the 
processing of its content by a tool.  This mechanism allows 
Magillem to represent any document fragments and manage 
any link between objects of any kind.   

 

A. Creating the VP 
Imperas [4] and OVP [5] provide all the SystemC building 

blocks to quickly build a Virtual Prototype of an embedded 
system. These blocks can be automatically packaged into IP-
XACT metadata with Magillem tool and the hardware system 
can be seamlessly assembled, compiled and simulated together 
with the embedded Software in a unified Eclipse framework. 

 

B. Creating the links 
Magillem provides an intuitive framework for creating all 

the links between any fragments of documentation 
(requirements, specification, code, datasheet…). The fragment 
can be as detailed as needed, ranging from a complete 
document (e.g. the specification of the hardware LED 
controller) to the finest unit object (e.g. the LED voltage or 
color parameter). Once the association is done the tool is able 
to analyze the impact of any change in any of the linked 
objects.   

 

C. Debugging the Software 
One of the most typical usages of a Virtual Prototype is to 

help writing, debugging and analyzing the embedded Software. 
Software developers spend a large part of their time debugging 

the SW. Usually the bug comes at the boundary between 
Hardware and Software, and it is only visible at run time. VP is 
a perfect tool for finding such bugs because it provides a very 
good observability of the HW registers and signals (e.g. is this 
interrupt signal raised when writing to that register?). Such 
debugging capabilities are usually provided by traditional VP 
tools and help capturing many SW errors.  

 

D. Locating the errors 
 But sometimes, the bug is not there: the value of the 
register is correct and the interrupt signal is properly raised as 
described in the model; the problem may come from a 
misinterpretation of a requirement that led to an incorrect 
specification and an incorrect implementation of the behavior.  
In this case, the debugging tool is not enough; it has to be 
coupled with a traceability tool capable of tracing the path from 
the requirement, through the specification down to the register 
implementation. Such a trace would for example show that the 
register could only be written during the boot mode. 

Linking the VP to the IP-XACT representation helps accessing 
data that is not available in the VP such as datasheet or non-
functional properties such as power, voltage or frequency. 
Linking the IP-XACT representation to the requirements and 
specification documents allows capturing such 
misinterpretation errors that would have taken hours or days to 
locate otherwise. Sometimes the error comes from a change (in 
the model or in the requirement) that was not properly 
propagated throughout the traceability chain. 

 

 
Fig. 1. Example of links between Requirements, Specification, Design, 

Documentation and test plan 

 

IV. CASE STUDY: THE LED SYSTEM 
Such advanced methodologies that mix SW debug on VP 

together with Traceability of requirements down to the HW 
and SW implementation has been validated on a simple 
system that controls the execution of critical tasks. 

We have used a system based on the tutorial defined in 
[7]. It is composed of a micro controller based on an ARM 
M3 processor, including simple memories, a simple 
interconnect, a bank of 8 LEDS and a UART connected to a 
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Terminal display. The system can run a RTOS and an 
application that monitors the switching tasks. Each executing 
task is represented by a LED; the LED is ON (highlighted) 
when the task is active (i.e. running) and OFF when it is 
suspended or stopped. An extra (red) LED is highlighted when 
an error occurs. 

A. Requirements 
The LED Functional Requirements includes the lines 

defined in Table I. 

TABLE I.  LED REQUIREMENTS (SAMPLE) 

Req number Description 

R-L1.1 The LED shall be used to indicate the system status. 

R-L1.1.1 A flashing green or yellow LED shall indicate that the 
system is running as expected 

R-L1.1.2 A flashing red LED shall indicate a fault condition. 

R-L1.1.3 The correct LED shall flash on and off once every 
second.  This flash rate shall be maintained to within 50ms.  

 

B. Refined requirements 
The system shall be based on the FreeRTOS [6] that 

includes the concept of co-routines and tasks. Tasks will be 
used for the Terminal display and co-routines for the LED 
display. The application code running on the RTOS shall 
create five flash co-routines and three tasks. One extra task 
(the idle task) is responsible for launching all the co-routines. 
The Table II details the mapping between the tasks and the 
LEDs. 

TABLE II.  LED REFINED REQUIREMENTS (SAMPLE) 

Req number Description 

RR-L1.1 The flash co-routines control LED's zero to four.   

RR-L1.2 LED five is toggled each time the string is transmitted on the 
UART.   

RR-L1.3 LED six is toggled each time the string is correctly received 
on the UART.   

RR-L1.4 

LED seven is latched on when an error is detected in any 
task or co-routine. The error is detected by a check function 
(called by the idle task) that loads the general purpose 
registers with a known value, then checks each register to 
ensure the held value is still correct.  As a low priority task 
this checking routine is likely to get repeatedly swapped in 
and out.  A register being found to contain an incorrect value 
is therefore indicative of an error in the task switching 
mechanism. 

 
These requirements are then further refined into low level 

HW and SW specifications.  
 

C. Refined specifications 
1)  HW specifications 
The UART and the LED peripherals have been derived 

from those defined in the TI Stellaris platform [8]. When the 
SW writes to the UART Data Register (DR), an interrupt is 
raised that will launch a SW interrupt routine. The LEDs are 
implemented as an 8 bits register. Each bit represents a LED: a 

one means highlight is ON, a zero means it is OFF. The flash 
co-routines are mapped to the bits 0 to 4 and are represented 
by a green LED.  The UART tasks are mapped to the bits 5 
and 6, represented by a yellow LED. And the error task is 
mapped to the bit 7 and represented as a red LED. 

 
2)  SW specifications 
To control the HW peripherals, SW drivers have to be 

implemented. A sample of the LED driver is given in Fig 2. 

Fig. 2. Sample of the SW driver code for the LED 

These drivers access the HW registers through some 
Hardware Abstraction Layer (HAL) code, usually part of the 
Hardware BSP, as illustrated in Fig 3. 

Fig. 3. Sample of the HAL code for the LED 

The application SW specifications defining how the tasks and 
co-routines are created are not described here; the focus of this 
paper being the HW dependent SW. 
 

D. VP implementation 
A VP platform has been created using Imperas/OVP 

SystemC models for each IP defined in the specification: an 
ARM M3 instruction accurate fast processor model, a LED 
controller connected to a LED display and a UART connected 
to a Terminal. The Processor and the peripherals are connected 
to a simple interconnect and communicate through 
transactional interfaces. The UART interrupt signal is directly 
connected to the ARM core Interrupt Controller. 

Each SystemC IP model has been automatically packaged 
in IP-XACT XML format to ease its management and reuse 
over time. These IP-XACT IP blocks have then been 
assembled and executed using Magillem VP assembly tool, as 
illustrated in fig 4. 

#define LED_BASE_ADDRESS 0x40004000 
#define LED() *((volatile char *) LED_BASE_ADDRESS+4) 
void ledWrite(unsigned char value) { 
    LED() = value; 
} 

void LedInitialise( void ) {...} 
void LedSet( unsigned int LED, boolean value ) 
{ 
  unsigned char ucBit = ( unsigned char ) 1; 
  vTaskSuspendAll(); 
  { /* atomic section */ 
     ucBit = ( ( unsigned char ) 1 ) >> LED; 
     if( ! value ) { 
        ucBit ^= ( unsigned char ) 0xff; 
        ucOutputValue &= ucBit; 
     } else { 
        ucOutputValue |= ucBit; 
     } 
     ledWrite(ucOutputValue); 
  } /* end atomic section */ 
  xTaskResumeAll(); 
} 



 
Fig. 4. Virtual Prototype of the LED platform 

 

E. Links creation  
Links have to be created between the VP (the design part) 

and the Requirements. Note that the specification documents 
have been omitted here to simplify the system. The creation of 
the links can be achieved with the Magillem tools by directly 
importing the Requirements and the IP-XACT representation 
of the VP. Links between fragments of the requirement 
document and the IP can then be easily created by simple drag 
and drop of fragments of data and visualized with the tool. 

For example, the LED requirement R-L1.1.2 can be linked 
to the refined requirement RR-L1.4 itself linked to last bit field 
of the LED HW register and it can also be linked to the error 
routine on the SW side that updates the LED register. 

 

F. Debugging the system 
Now comes the exciting part of the work. When simulating 

this simple system, we observe that the red LED is highlighted 
after some time. The VP flexibility allows to simply putting a 
breakpoint in both the SW and in the HW when the LED 
register is written and stop the simulation when the red LED is 
highlighted.  

Thanks to the link to the requirement RR-L1.4, we can see 
that the LED seven is mapped to the Error condition. But the 
register value shows that the bit0 is at 1 and the bit7 is at 0. It is 
very likely that either the display LEDs connected to the 
register have been reversed or that on the SW side, the 
mapping between the register bits and the tasks/co-routines was 
reversed. More debugging demonstrated that the SW side was 
the root of the error. The location of the SW error was in the 
LED driver: the LedSet function was erroneously shifting right 
instead of shifting left, as illustrated in Fig 5. 

 

Fig. 5. Sample of the SW driver code for the LED 

 

Both the SW and the HW were right. The error only shows 
up when linking the two and execute the SW with the HW. A 
direct pointer to the requirement could immediately separate 
out the HW and the SW responsibilities, saving hours of debug 
and iterations between HW and SW teams.  

 

FUTURE WORK 
Such an integrated environment with immediate impact 

analysis to help debugging complex systems is even more 
useful when some requirement changes or when the spec 
changes or when the implementation changes (e.g. when a bug 
is fixed). Of course this assumes that the links have been 
properly created and that they fully cover the requirements. 
Additional techniques need to be developed to automate the 
creation of the links and to verify the links are complete. 

 

CONCLUSION 
This paper explained how the combination of innovative 

traceability techniques with advanced VP execution 
environment helps locating SW errors by tracing the 
dependencies all the way through from requirements down to 
the embedded system execution and vice-versa. This is the 
beginning of a long avenue of developments to improve the 
consistency and coherency between the functional 
requirements and their implementation through early validation 
on VPs. 
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v void LedSet( unsigned int LED, boolean value ) 
{ 
  … 
     ucBit = ( ( unsigned char ) 1 ) << LED; // error was here 
  … 
} 


