
08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 1	

Using	Virtual	Prototypes	to	Improve	the	
Traceability	of	Cri;cal	Embedded	Systems		

Jean-Michel	Fernandez,	Magillem	
Larry	Lapides,	Imperas	

Agenda	

!  Scope	
!  Traceability	
!  Virtual	Prototyping	
!  Linking	the	two	worlds	to	improve	the	debug	of	
Hardware-dependent-SoQware	

!  Illustra.on	on	a	simple	use	case	
!  Future	work	and	conclusion	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 2	

Scope	

!  Designing	cri.cal	embedded	systems	requires	
compliance	with	domain	specific	safety	standards,	such	
as	DO-178B/C	for	avionics	or	ISO-26262	for	automo.ve,	
which	in	turn	require	strong	traceability	from	the	
func.onal	specifica.on	down	to	the	implementa.on	of	
the	complete	system	including	Hardware	and	SoQware	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 3	

Traceability	

!  Traceability	is	one	of	the	essen.al	ac.vi.es	of	
requirements	management:		
•  Ensures	that	the	right	product	is	being	built	at	each	phase	of	
the	embedded	systems	development	life	cycle,		

•  Measures	the	progress	of	that	development	
•  Reduces	a	the	effort	required	to	determine	the	impacts	of	
requested	changes.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 4	

!  Efficient	tools	exist	to	trace	requirements	by	crea.ng	and	
managing	specifica.on-to-implementa.on	links.		

!  But	to	unambiguously	ensure	the	completeness	of	a	
requirement,	these	tools	usually	miss	the	links	between	
the	requirement	specifica.on,	the	hardware	objects,	the	
soQware	objects	and	their	execu.on	state	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 5	

Traceability	tools	miss	some	links	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 6	

Require	
ments	

HW	
objects	

SW	
objects	

Execu.o
n	state	

Register	Wri*en?	
Interrupt	Raised?	
Safe	rou5ne	Launched?	

Register,		
Interrupt	signal…	

Driver,	
Safe	rou5ne…	

R1:	Launch	safe	rou5ne	when		
Secure	register	is	accessed	

?	

?	?	

ü  		

Traceability	tools	miss	some	links	

!  This	clearly	illustrates	the	need	for	Integra.ng	
Specifica.on,	Design	and	Documenta.on	(ISDD),	a	
novel	approach	invented	by	Magillem	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 7	

ISDD	

ISDD	

!  Such	an	integra.on	is	enabled	by	the	use	of	XML	
Metadata	to	represent	any	document	fragments	and	
manage	any	link	between	objects	of	any	kind.		
•  IP-XACT	(IEEE	1685)	is	an	XML	standard	with	a	strong	seman.c	
to	represent	Hardware	components	poten.ally	composed	of	
mul.ple	heterogeneous	data	

•  META-X©	is	an	XML	innova.ve	format	that	encompasses	all	
the	standards	and	de-facto	standard	document	formats	based	
on	XML	such	as	DITA	or	MicrosoQ	Office	formats.	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 8	

Linking	to	HW	details	

!  Adding	a	link	to	the	HW	design	execu.on	on	the	physical	
prototyping	board	may	come	too	late	in	the	design	cycle	
to	capture	func.onal	specifica.on	or	requirements	
errors.	

!  Difficult	to	verify	some	func.onal	requirements	(e.g.	
inject/observe	an	error)	
•  Some	objects	may	not	be	observable	on	the	physical	
prototype	(e.g.	register	value,	interrupt	signal)		

•  Some	corner	case	states	may	not	be	reachable	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 9	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 10	

Require	
ments	

HW	
objects	

SW	
objects	

Execu.o
n	state	

Register	Wri*en?	
Interrupt	Raised?	
Safe	rou5ne	Launched?	

Register,		
Interrupt	signal…	

Driver,	
Safe	rou5ne…	

R1:	Launch	safe	rou5ne	when		
Secure	register	is	accessed	

!  Moreover,	in	order	to	record	the	execu.on	state	of	an	
object,	this	object	must	be	observable.		

ü  		

ü  		ü  		

ü  		

Advanced	Traceability	tools	

Prototyping	

!  Prototyping	is	a	common	process	to	help	stakeholders	
discover	problems	by	valida.ng	and	verifying	their	
requirements:	it	is	more	accessible	than	the	system	
specifica.on,	it	demonstrates	the	requirements,	it	is	reusable	
and	evolu.ve.		

	
!   It	can	take	various	forms	ranging	from	a	paper	prototype	of	a	
computerized	system	to	a	formal	executable	model	of	the	
specifica.ons.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 11	

FPGA	Board		
(RTL)	

SW		
Debugger	

Virtual	Prototyping	

!  VPs	are	fully	func.onal	soQware	simula.on	models	of	
complete	hardware	systems	that	can	execute	unmodified	
produc.on	binary	code	at	near	real	.me	speed.		

	

!  VPs	enable	early	func.onal	verifica.on	&	debug	of	embedded	
soQware	on	the	target	hardware	plahorm,	usually	months	
before	the	physical	prototype	is	available.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 12	

Virtual		
Prototype	
(TLM)	

SW		
Debugger	

SW	
Connecto

r	

Virtual	Prototyping	

!  VPs	can	be	seen	as	an	executable	specifica.on.	
!  They	are	based	on	a	fast	simulator	and	on	fast	simulatable	
models	of	the	hardware	system,	usually	using	the	SystemC	
standard	(IEEE	1666).	

!  VPs	offer	controllability,	observability	and	flexibility.		
!  VP	tools	provide	the	necessary	debug,	monitoring	and	analysis	
features;	usually	implemented	in	a	non-intrusive	manner,	
without	modifying	or	instrumen.ng	the	produc.on	embedded	
SW	code.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 13	

! Imperas	and	OVP	provide	all	the	SystemC	building	blocks	to	
quickly	build	a	Virtual	Prototype	of	an	embedded	system.		

!  These	blocks	can	be	automa.cally	packaged	into	IP-	XACT	
metadata	with	Magillem	tool	

!  And	the	hardware	system	can	be	seamlessly	assembled,	
compiled	and	simulated	together	with	the	embedded	
SoQware	in	a	unified	Eclipse	framework.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 14	

Crea@ng	the	VP	

!  Magillem	provides	an	intui.ve	framework	for	crea.ng	all	the	
links	between	any	fragments	of	documenta.on	
(requirements,	specifica.on,	code,	datasheet...).		

!  The	fragment	can	be	as	detailed	as	needed,	ranging	from	a	
complete	document	(e.g.	the	specifica.on	of	an	hardware	
controller	device)	to	the	finest	unit	object	(e.g.	the	voltage	or	
throughput	parameter).		

!  Once	the	associa.on	is	done	the	tool	is	able	to	analyze	the	
impact	of	any	change	in	any	of	the	linked	objects.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 15	

Crea@ng	the	Links	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 16	

Requirement	
change	

Impact	analysis	Design	change	

Impact	
consolida.on	

Documenta.on	
consolida.on	

Crea@ng	the	Links	

!  One	of	the	most	typical	usages	of	a	Virtual	Prototype	is	
to	help	wri.ng,	debugging	and	analyzing	the	embedded	
SW.	Usually	the	bug	comes	at	the	boundary	between	HW	
and	SW,	and	it	is	only	visible	at	run	.me.		
•  VP	is	a	perfect	tool	for	finding	such	bugs	because	it	provides	a	
very	good	observability	of	the	HW	registers	and	signals.		

•  Such	debugging	capabili.es	are	usually	provided	by	tradi.onal	
VP	tools	and	help	capturing	many	SW	errors.		

!  But	some.mes,	the	bug	is	not	there…	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 17	

Debugging	the	embedded	SW	

!  The	error	may	come	
•  From	a	change	(in	the	model	or	in	the	requirement)	that	was	not	
properly	propagated	throughout	the	traceability	chain.		

•  Or	from	a	misinterpreta.on	of	a	requirement	that	led	to	an	incorrect	
implementa.on	of	the	behavior.		

!  The	debugging	tool	must	therefore	be	coupled	with	a	
traceability	tool	capable	of	tracing	the	path	from	the	
requirement,	through	the	specifica.on	down	to	the	HW	
implementa.on.		
•  Such	a	trace	would	for	example	show	that	the	register	could	only	be	
wrimen	during	the	boot	mode	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 18	

Loca@ng	the	errors	

!  Magillem	provides	such	an	environment	
!  Linking	the	VP	to	the	IP-XACT	representa.on	helps	accessing	
data	that	is	not	available	in	the	VP		
•  such	as	datasheet	or	non-	func.onal	proper.es	such	as	power,	
voltage	or	frequency.		

!  Linking	the	IP-XACT	representa.on	to	the	requirements	and	
specifica.on	documents	allows	capturing	such	
misinterpreta.on	errors		
•  that	would	have	taken	hours	or	days	to	locate	otherwise.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 19	

Loca@ng	the	errors	

!  Simple	system	that	controls	the	execu.on	of	cri.cal	tasks	
!  System	descrip.on	
•  Each	execu.ng	task	is	represented	by	a	LED	
•  the	LED	is	ON	(highlighted)	when	the	task	is	ac.ve	(i.e.	
running)		

•  The	LED	if	OFF	when	it	is	suspended	or	stopped.		
•  An	extra	(red)	LED	is	highlighted	when	an	error	occurs.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 20	

Case	study:	overview	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 21	

Case	study:	System	Requirements	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 22	

LED	Func.onal	
Requirements	
(sample)	

LED	
Requirements	
(sample)	

Case	study:	Refined	Requirements	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 23	

LED	Hardware	
Requirements	
(sample)	

LED	Hardware	
Implementa.on	
(IP-XACT)	

Case	study:	HW	Specifica@ons	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 24	

Hardware	Abstrac.on	
Layer	(HAL)	code,	
usually	part	of	the	
Hardware	BSP	

!
void LedInitialise(void) {...}  
void LedSet(unsigned int LED, boolean
value) { !
 unsigned char ucBit = (unsigned char)
1;!
 vTaskSuspendAll();  
 { !
 /* atomic section */!
 ucBit = ((unsigned char) 1) >> LED;!
 if(! value) { !
 ucBit ^= (unsigned char) 0xff;!
 ucOutputValue &= ucBit;!
 } else { !
 ucOutputValue |= ucBit; !
 } !
 ledWrite(ucOutputValue); !
 } /* end atomic section */ !
 xTaskResumeAll();!
}!

SW	Driver	for	the		
LED	peripheral	

#define LED_BASE_ADDRESS 0x40004000  
#define LED() *((volatile char *)
LED_BASE_ADDRESS+4) !
void ledWrite(unsigned char value) { !

!LED() = value; !
} !

Case	study:	SW	specifica@ons	

ARM	M3	instruc.on	
accurate	fast	

processor	model	
UART	

connected	to	a	
Terminal.		

LED	controller	
connected	to	a	
LED	display	

Memories	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 25	

Interconnect	

Case	study:	VP	implementa@on	

!  VP	plahorm	based	Imperas/OVP	SystemC	TLM	models	for	
each	IP	defined	in	the	specifica.on	

!  Each	SystemC	IP	model	has	been	automa.cally	packaged	in	IP-
XACT	XML	format	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 26	

Case	study:	Links	crea@on	

!  Links	have	been	created	between	the	VP	(the	HW/SW	design	
part)	and	the	Requirements.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 27	

Case	study:	System	debug	

!  When	simula.ng,	we	observe	that	the	red	LED	is	highlighted	
aQer	some	.me.		

!  The	VP	flexibility	allows	to	simply	puong	a	breakpoint	in	both	
the	SW	and	in	the	HW	when	the	LED	register	is	wrimen	and	
stop	the	simula.on	when	the	red	LED	is	highlighted.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 28	

Case	study:	System	debug	

!  Thanks	to	the	link	to	the	requirements,	we	can	see	that	
the	LED	seven	is	mapped	to	the	Error	condi.on.	

!   And	that	in	normal	mode	(no	error)	the	value	of	the	LED7	
(bit7	of	the	LED	register)	should	0	(not	1).	

	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 29	

void LedInitialise(void) {...}  
void LedSet(unsigned int LED, boolean
value) { !
 unsigned char ucBit = (unsigned char)
1;!
 vTaskSuspendAll();  
 { !
 /* atomic section */!
 ucBit = ((unsigned char) 1) >> LED;!
 if(! value) { !
 ucBit ^= (unsigned char) 0xff;!
 ucOutputValue &= ucBit;!
 } else { !
 ucOutputValue |= ucBit; !
 } !
 ...!

The	loca.on	of	
the	SW	error	
was	in	the	LED	
driver:	shiQ	
right	instead	
of	shiQ	leQ	

Case	study:	Conclusion	

!  More	debugging	demonstrated	that	the	SW	side	was	the	root	
of	the	error.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 30	

Require	
ments	

HW	
objects	

SW	
objects	

Execu.on	
state	

Case	study:	Conclusion	

!  The	error	only	shows	up	when	linking	together	the	
Specifica.on	and	the	Implementa.on,	and	when	execu.ng	
the	SW	with	the	HW.		

!  A	direct	pointer	to	the	requirement	could	immediately	
separate	out	the	HW	and	the	SW	responsibili.es,	saving	hours	
of	debug	and	itera.ons	between	HW	and	SW	teams.		

!  Such	an	integrated	environment	with	immediate	impact	
analysis	to	help	debugging	complex	systems	is	even	more	
useful	when	some	requirement	changes	or	when	the	spec	
changes	or	when	the	implementa.on	changes	(e.g.	when	a	
bug	is	fixed).		

!  Of	course	this	assumes	that	the	links	have	been	properly	
created	and	that	they	fully	cover	the	requirements.	Addi.onal	
techniques	need	to	be	developed	to	automate	the	crea.on	of	
the	links	and	to	verify	the	links	are	complete.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 31	

Future	work	

!  Combina.on	of	innova.ve	traceability	techniques	with	
advanced	VP	execu.on	environment	helps	loca.ng	SW	errors	
by	tracing	the	dependencies	all	the	way	through	from	
requirements	down	to	the	embedded	system	execu.on	

!  …	and	vice-versa.		
!  This	is	the	beginning	of	a	long	avenue	of	developments	to	
improve	the	consistency	and	coherency	between	the	
func.onal	requirements	and	their	implementa.on	through	
early	valida.on	on	VPs.		

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 32	

Conclusion	

More	on	
		
	
	

	
stand	4-538	

08/03/17	 Confiden.al	-	Copyright	(c)	Magillem	2017	 33	

Thank	you	

