Imperas

An introduction to RISC-V
processor verification
techniques

Lee Moore
Aimee Sutton

mailto:moore@imperas.com
mailto:aimees@imperas.com

-
RISC-V Design Verification Innperas

Constrained
Random

Signature

Trace
compare

Functional
coverage

Agenda im[@eras

* RISC-V Design Verification challenges

* RISC-V design verification techniques
* Techniques from ASIC/SoC DV
* How to choose the right technique?

RISC-V Design Verification |m|:9)eras
challenges

Processor verification has been a niche discipline
Proprietary techniques

No industry-standard best practices or verification IP
Until recently... (stay tuned)

Techniques from the ASIC/SoC verification are insufficient

New methods are required

Take advantage of what has worked in the ASIC world
Add to it and adapt for RISC-V

© Imperas Software Ltd.

I
Agenda Innperas

* RISC-V Design Verification challenges

* RISC-V design verification techniques
* Post-simulation trace file compare
* Self-checking tests and Signatures
* Step-and-compare
* Step-and-compare with asynchronous events
* Verification IP using RVVI
* Demo video

* Techniques from ASIC/SoC DV
* How to choose the right technique?

I
Post-simulation trace file im@eras

compare

* Components

* Test programs
* Can be generated by an ISG — Instruction Stream Generator

Instruction Set Simulator (ISS)
DUT and Tracer

RTL simulator

Comparison script

Test programs lnnperas

Directed tests
Write your own
Compliance tests (RISC-V International)
Commercial test suites (e.g. Imperas PMP and Vector)
OpenHW directed test suites (synchronous & asynchronous)

Instruction stream generators (ISG)
Configurable to match processor extensions

Open source solutions
E.g. riscv-dv (CHIPS Alliance)

Commercial solutions
E.g. Valtrix STING

© Imperas Software Ltd.

e
Instruction Set Simulators Innperas

* ISS

* Simulate the execution of a program on a processor
* Produce a trace file output
* Open source solutions
* E.g. spike
* Commercial/closed-source solutions
* E.g. riscvOVPsimPlus

.

]
RISCV.elf Im[;@eras Imperas_trace.log

I
DUT + Tracer Innperas

* DUT
* RTL for RISC-V processor
* Memory model and bus i/f
* Ability to load test program into memory

Testbench

RISC-V Core RTL
(DUT)

* Tracer

* Extracts information needed for DV
* E.g. PC, register values

* Bespoke to particular microarchitecture _

* Often written by processor designers
* Can use RVVI-TRACE standard

I
Trace compare: Process Hﬁ]ﬂ@eras

DUT trace.log

RISC-V RTL
& memory

RISC-V
Instruction
Stream
Generator

v

compare

t

| —

mperas

RISCV.c RISCV.elf

Imperas_trace.log

* Run random generator (ISG) to create tests

* Simulate using ISS; write trace log file

* Simulate using RTL; write trace log file

* Run compare program to see differences / failures

Page 10 © Imperas Software Ltd.

Trace compare: Pros and Cons 1lP@ras

Pros:
Availability of generic RISC-V simulators (e.g. riscvOVPsimPlus from Imperas)
Simple to set up and use

Cons:
Incompatible trace formats
Must run RTL simulation to the end
Cannot debug live
Difficult to verify asynchronous events (e.g. interrupts, debug requests)
Not a comprehensive DV strategy

© Imperas Software Ltd.

I
Agenda Innperas

* Background: RISC-V Design Verification challenges

* RISC-V design verification techniques
* Post-simulation trace file compare
* Self-checking tests and Signatures
* Step-and-compare
* Step-and-compare with asynchronous events
* Verification IP using RVVI
* Demo video

* Techniques from ASIC/SoC DV
* How to choose the right technique?

Page 12 © Imperas Software Ltd.

I
Self-checking tests Innperas

* Components:

* RISC-V processor (DUT) and test
program; optionally ISS

{] ° 1 1 -
Process: Application RISC-V RTL “Test Passed”
: <cross>.elf & memory
* Each test program checks its
results

* Prints message to log
* Or writes bit to memory

Page 13 © Imperas Software Ltd.

I
Signature comparison nperas

* Components:

* RISC-V processor (DUT) and test
program; ISS

* Process:
* Run the test program on the DUT and -
save the output (signature file) Application — RISCV.org
: : : <cross>.elf Signature file
* Run ISS, write signature file
* Compare/diff file results
Compare
* This is the approach taken by RISCV
International for their architectural Application RISC-V RTL RISCV or
. . 7 . ” -Or8
validation (“compliance tests”) <cross>.elf & memory Signature file

Page 14 © Imperas Software Ltd.

Self-checking tests & Signatures: im@eras
Pros and Cons

* Pros:

* Simple to set up and execute
* Free ISS: https://github.com/riscv-ovpsim
* Free compiler: https://github.com/Imperas/riscv-toolchains

* RISC-V compliance tests freely available

* Cons:
* Directed tests cover a subset of processor functionality
* Not a complete DV strategy

Page 15 © Imperas Software Ltd.

https://github.com/riscv-ovpsim
https://github.com/Imperas/riscv-toolchains

I
Agenda Innperas

* RISC-V Design Verification challenges

* RISC-V design verification techniques
* Post-simulation trace file compare
 Self-checking tests and Signatures
* Step-and-compare
* Step-and-compare with asynchronous events
* Verification IP using RVVI
* Demo video

* Techniques from ASIC/SoC DV
* How to choose the right technique?

Page 16 © Imperas Software Ltd.

I
Step and compare Innperas

* Components
* Test programs (can be generated by an ISG)
* Processor reference model
* DUT and tracer
* RTL simulator
e Step-and-compare logic

Page 17 © Imperas Software Ltd.

e
Processor reference model Innperas

* Reference model requirements:
* Configurable to select RISC-V ISA extensions
* Ability to add customizations (e.g. instructions, CSRs)
* Can run in lock-step with the RTL simulator (co-sim)
* Ability to “step” reference model at significant events (retire, trap)
* Functions to query state of model for comparison

Ilperas

Page 18 © Imperas Software Ltd.

I
Step and compare: Process Innperas
g Y

RISC-V RISC-V RTL
. & memor
Instruction Y Control
Step &
Generator imﬂ@eras compare
—

Stream

Results.log

* Reference model is encapsulated in a SystemVerilog testbench

Control block steps both DUT and reference model

Extracts data from each; compares results

Differences reported immediately

Page 19 © Imperas Software Ltd.

Step-and-compare:
Pros and Cons

Pros:
Instruction by instruction lock-step comparison
Comparison of execution flow, program data, internal state
Errors are flagged immediately — no runaway simulations
Detects synchronous bugs

Cons:
Step-and-compare logic can be fragile and error prone
Does not easily verify asynchronous events

© Imperas Software Ltd.

Imperas

I
Agenda Innperas

* Background: RISC-V Design Verification challenges

* RISC-V design verification techniques
* Post-simulation trace file compare
» Self-checking tests and Signatures
* Step-and-compare
* Step-and-compare with asynchronous events
* Verification IP using RVVI
* Demo video

* Techniques from ASIC/SoC DV
* How to choose the right technique?

Page 21 © Imperas Software Ltd.

e
Step and compare + Async Inperas

* Components
* Test programs (can be generated by an ISG)
* Processor reference model
* DUT and tracer
* RTL simulator
* Asynchronous event drivers (e.g. UVM agents)
e Step-and-compare logic +

Page 22 © Imperas Software Ltd.

.
Step and compare + Async: im@eras

Process
/ Debug Interrupt \
driver driver
RISC-V RTL .
& memory Control
Step &
compare

ilﬁ]ﬂ[@eras Results.log

< g

* Asynchronous events are driven into the DUT

RISC-V
Instruction

Tracer

Stream
Generator

RISCV.c RISCV.elf

* Step and compare logic informs reference model about
async events

Page 23 © Imperas Software Ltd.

Async step and compare:
Pros and Cons I[ﬁTD@eraS

Pros:
All the benefits of step-and-compare
Responds to asynchronous events

Cons:
Step-and-compare logic can be fragile and error prone
Implementation of async event handling is not reusable
Async events not connected to the reference - can conceal bugs
Significant effort to implement and maintain

© Imperas Software Ltd.

I
Agenda Innoeras

* Background: RISC-V Design Verification challenges

* RISC-V design verification techniques
* Post-simulation trace file compare
» Self-checking tests and Signatures
e Step-and-compare
e Step-and-compare with asynchronous events
* Verification IP using RVVI
* Demo video

* Techniques from ASIC/SoC DV
* How to choose the right technique?

Page 25 © Imperas Software Ltd.

RISC-V Processor VIP Innperas

Requirements:
Configurable, extendable RISC-V processor reference model
Standard interface to receive tracer data
Standard way to receive asynchronous events
Methods to configure, control and query the reference model

Mechanism to compare DUT state with the reference model and report
errors/mismatches

A method to verify DUT response to asynchronous events

© Imperas Software Ltd.

Standard interface: RVVI Innperas

RVVI = RISC-V Verification Interface Testbench
https://github.com/riscv-verification/RVVI

Work has evolved over 2 years

Simulation
Imperas, EM Micro, SiLabs, OpenHW
RISC-V

Standardize communication Verification
between testbench and RISC-V VIP P

Two parts:

RVVI-TRACE: signal level interface to
RISC-V VIP

RVVI-API: function level interface to
RISC-V VIP

RVVI-API

RVVI-TRACE

© Imperas Software Ltd.

https://github.com/riscv-verification/RVVI

I
RVVI-TRACE Innperas

* Defines information to be extracted by

tracer
 SystemVerilog interface i
* Includes functions to handle RISCY u nsnl.]
asynchronous events Core : 2 RISC-V
|— by e .
- E.g. interrupts, debug req (DUT) | net_push() | g | VerficationlP
a net_pop()

* https://github.com/riscv-
verification/RVVI/tree/main/RVVI-VLG

Page 28 © Imperas Software Ltd.

https://github.com/riscv-verification/RVVI/tree/main/RVVI-VLG
https://github.com/riscv-verification/RVVI/tree/main/RVVI-VLG

I
mperas

* Standard functions that RISC-V
processor VIPs need to implement

RVVI-AP]

* Supports a step-and-compare
methodology

* C and SystemVerilog versions
available

* https://github.com/riscv-
verification/RVVI/blob/main/include
/host/rvvi/rvvi-api.h

© Imperas Software Ltd.

.
ImperasDV components im@eras

Configurable reference

Imperas

Page 30 © Imperas Software Ltd.

-
ImperasDV components imperas

Control and Introspection

Imperas

Page 31 © Imperas Software Ltd.

.
ImperasDV components imperas

Asynchronous events

Imperas

Page 32 © Imperas Software Ltd.

.
ImperasDV compoents imperas

Comparison

Imperas

RISC-V
Reference
Model

Configuration

Synchronization

Predictive
engine

Scoreboard

Pass/Fail
determination

Page 33 © Imperas Software Ltd. April 23

.
ImperasDV components imperas

Coverage and logging

Imperas

RISC-V
Reference
Model

trace2cov

Configuration

trace2api

Synchronization

Predictive
trace2log engine

Scoreboard

Pass/Fail
determination

Page 34 © Imperas Software Ltd.

Verification IP + RVVI: process 1IN[P@IaAS

Instantiate VIP in a testbench
Connect tracer using RVVI-TRACE i/f

DUT and reference model run the
same program

Retire, trap events communicated
over RVVI

Internal state continuously compared

RVVI-TRACE monitored for async
events

Predictive engine verifies legal
scenarios

© Imperas Software Ltd.

Verification IP using RVVI Innperas

Pros:
Errors are flagged immediately
Finds synchronous and asynchronous bugs
Checking is done for you
Reusable across different core DV projects
Interchangeable due to standard interface (RVVI)
Ease of use
Training, documentation, and support

Cons:
Cost of VIP licenses

© Imperas Software Ltd.

I
Agenda Innoeras

* Background: RISC-V Design Verification challenges

* RISC-V design verification techniques
* Post-simulation trace file compare
 Self-checking tests
e Step-and-compare
e Step-and-compare with asynchronous events
* Verification IP using RVVI
* Demo video

* Techniques from ASIC/SoC DV
* How to choose the right technique?

Page 37 © Imperas Software Ltd.

I
Demonstration Innperas

* DUT: OpenHW Group CV32E40X RISC-V processor
* Simulation: passing test
» Simulation: failing test
* Simulation: asynchronous event bug

Page 38 © Imperas Software Ltd.

I
VIDEO: Passing test Innperas

* 1:22

Page 39 © Imperas Software Ltd.

I
VIDEO: Failing test Innperas

» 2:59

Page 40 © Imperas Software Ltd.

Asynchronous events

RISC-V Core pins

clk /o

I
Innoeras

| N A W A W A U A W

RVVI-TRACE i/f

valid / \

Interru

upt taken, but which one?

retire / \

trap

PC) 0x1000

~)_0x1004)~

MEPC

MIP

0x00000000 0x00000000/0x ?22?

A 0x1004
A
A

MCAUSE

0x00000000 0x00000000/0x ????

Page 41

© Imperas Software Ltd.

I
VIDEO: Asynchronous Innperas

* 4:38

Page 42 © Imperas Software Ltd.

Agenda im@eras

* Background: RISC-V Design Verification challenges
* RISC-V design verification techniques

* Techniques from ASIC/SoC DV
* Verification planning
* Functional coverage
* Assertions

* How to choose the right technique?

Page 43 © Imperas Software Ltd.

Verification planning lnnperas

Start with the end in mind. What are your verification goals?
Capture them in a plan

How you will measure that they have been met?
Directed test, coverpoint, assertion?
Capture this in the plan too

Metric-driven verification is popular

Common metrics: code coverage, functional coverage, all tests passing, no new bugs
found for a period of time

Sample open source verification plans:
https://github.com/openhwgroup/core-v-verif/tree/master/cv32e40p/docs/VerifPlans

© Imperas Software Ltd.

Functional coverage lnnperas

Define goals for verification

Measure that goals are achieved

Measure the effectiveness of constrained-random stimulus
Requires EDA tools to capture, merge, display coverage results
Requires many simulations to achieve coverage closure
Industry-standard best practice for ASIC/SoC

© Imperas Software Ltd.

RISC-V Functional Coverage Innperas

For a processor there are different types of functional coverage required:

Standard ISA architectural features
unpriv. ISA items: mainly instructions, their operands, their values
=> these are standard and the same for all RISC-V processors — it is the spec...

Customer core design & micro-architectural features
priv. ISA items, CSRs, Interrupts, Debug block, ...
pipeline, multi-issue, multi-hart, ...
Custom extensions, CSRs, instructions

© Imperas Software Ltd.

RISC-V Instructions (Standard ISA
architectural feature) Ihﬁ]ﬂ@eras

There are many different instructions in the RV64 extensions:
Integer: 56, Maths: 13, Compressed: 30, FP-Single: 30, FP-Double: 32
Vector: 356, Bitmanip: 47 Krypto-scalar: 85
P-DSP: 318
For RV64 that is 967 instructions...

Each instruction needs SystemVerilog covergroups and coverpoints
10-40 lines of SystemVerilog for each instruction

10,000-40,000++ lines of code to be written

Not design or core specific

© Imperas Software Ltd.

Generating functional coverage source files from machine =

readable ISA definition |mpe ras

RISC-V
privilege and un-privilege

Imperas RVFCgen l Configuration:

' xlen, csr, csrFields
ISA machine readable » CSF) ’

definition

compliance, DV

l l extensions, options, ...

]

a 21 9 o kS,
Functions to convert =llwl<|S||ollw|allall2]|>]|a S (n,:) S S| w 2] =
RVVI-TRACE Sl TS| = S| < slol [sl 33215
to Olo|lo|I|o|w olJlol o | |BlElalls|gl|le
> X —_— > (To) (o] (o) < o [Q o)
" Functional Coverage = i i > i i > === i O k>° vl o 8 S|lall o
@) structures o el o= f e ff e z = S| e > @
D w | — I 5
o' 4
H
S o @ (%] = 8
= " o C| < o c
[~1 I Y M S 2R (== A = =T S|wn olelw [o]l2]]| &
clk Functional Coverage r; Sl o~ Sl & IS o SIS & ~ B g a S GE) q_gJ
> i oM v
sampling zlzlz|z|z|z|z|z|z|z|z| |2[2] |3[L|8]||2]2||s
x| |_>|_|< = T 0
)
Hand coded Generated SystemVerilog source

SystemVerilog

Page 48 © Imperas Software Ltd.

E
Functional coverage examples |[TLTD|P)eraS

* riscvISACOV
* https://github.com/riscv-verification/riscvISACOV

* OpenHW Group core-v-verif
* https://github.com/openhwgroup/core-v-verif/tree/master/cv32e40s/env/uvme/cov

Page 49 © Imperas Software Ltd.

https://github.com/riscv-verification/riscvISACOV
https://github.com/openhwgroup/core-v-verif/tree/master/cv32e40s/env/uvme/cov

Assertions lnnperas

Popular languages: SVA (SystemVerilog), PSL

Concurrent assertions
Rules to check behaviour over time
Can be used to verify micro-architectural details
Can be written by RTL designers
Can be reused in formal verification

“Cover” properties contribute to functional coverage

© Imperas Software Ltd.

Agenda im@eras

* RISC-V Design Verification challenges

* RISC-V design verification techniques
* Techniques from ASIC/SoC DV

* How to choose the right technique?
* DUT considerations
* Technology questions
* Hybrid methodologies

Page 51 Confidential and Proprietary © Imperas Software Ltd.

DUT considerations affecting W@L@eras
verification method

Is this a new design?

Have you started from a commercial IP core?
What is the magnitude of your change?
What does your IP vendor recommend for verification?

Are you using or modifying an open-source core?
Can you find evidence of verification done to date?
Can you reuse or build upon existing DV infrastructure?

What is your goal?
Research project, sell/provide IP, tape out

What is your requirement for reuse?
Across teams, future projects, etc.

© Imperas Software Ltd.

Technology considerations
affecting verification method Imperas

Verification language
SystemVerilog, VHDL, C/C++, Python?

Some methodologies only available in a certain language
E.g. functional coverage (SV), UVM (SV, Python), OSVVM (VHDL)

UVM

Widely adopted and industry proven

Good body of knowledge / online resources available

Strengths: virtual sequences, configuration database, messaging
Weaknesses: limited choice of RTL simulation tools, heavy-weight solution

Build it yourself, use open-source, or use Verification IP?
Cost of VIP licenses vs cost of time and effort to build

© Imperas Software Ltd.

Hybrid methodologies nperas

Post-simulation trace file compare + VIP
Use trace file compare for ISA / unprivileged tests

Use verification IP for complex scenarios:
Sync and Async exceptions
Corner cases

Make sure to combine functional coverage results
Pros: can save on license costs

Cons: effort required to build, maintain, and co-ordinate two separate
verification environments

© Imperas Software Ltd.

Thank you

Functional

coverage

Page 55

* Any questions?

* Lee Moore
(moore@imperas.com)

* Aimee Sutton
(aimees@imperas.com)

© Imperas Software Ltd.

I
mperas

mailto:moore@imperas.com
mailto:aimees@imperas.com

—
mperas

