
@ImperasSoftware

An introduction to RISC-V
processor verification
techniques
Lee Moore moore@imperas.com
Aimee Sutton aimees@imperas.com

mailto:moore@imperas.com
mailto:aimees@imperas.com

RISC-V Design Verification

© Imperas Software Ltd.Page 2

SignatureConstrained
Random

ISS UVM

ISGRVVI

Functional
coverage

Trace
compare

Interrupts

Agenda

• RISC-V Design Verification challenges
• RISC-V design verification techniques
• Techniques from ASIC/SoC DV
• How to choose the right technique?

© Imperas Software Ltd.Page 3

RISC-V Design Verification
challenges
• Processor verification has been a niche discipline

• Proprietary techniques

• No industry-standard best practices or verification IP
• Until recently… (stay tuned)

• Techniques from the ASIC/SoC verification are insufficient
• New methods are required

• Take advantage of what has worked in the ASIC world
• Add to it and adapt for RISC-V

© Imperas Software Ltd.Page 4

Agenda
• RISC-V Design Verification challenges
• RISC-V design verification techniques

• Post-simulation trace file compare
• Self-checking tests and Signatures
• Step-and-compare
• Step-and-compare with asynchronous events
• Verification IP using RVVI
• Demo video

• Techniques from ASIC/SoC DV
• How to choose the right technique?

© Imperas Software Ltd.Page 5

Post-simulation trace file
compare
• Components

• Test programs
• Can be generated by an ISG – Instruction Stream Generator

• Instruction Set Simulator (ISS)
• DUT and Tracer
• RTL simulator
• Comparison script

© Imperas Software Ltd.Page 6

Test programs
• Directed tests

• Write your own
• Compliance tests (RISC-V International)
• Commercial test suites (e.g. Imperas PMP and Vector)
• OpenHW directed test suites (synchronous & asynchronous)

• Instruction stream generators (ISG)
• Configurable to match processor extensions
• Open source solutions

• E.g. riscv-dv (CHIPS Alliance)
• Commercial solutions

• E.g. Valtrix STING

© Imperas Software Ltd.Page 7

Instruction Set Simulators

• ISS
• Simulate the execution of a program on a processor
• Produce a trace file output
• Open source solutions

• E.g. spike
• Commercial/closed-source solutions

• E.g. riscvOVPsimPlus

© Imperas Software Ltd.Page 8

RISCV.elf Imperas_trace.log

Imperas ISS
(cpu+memory)

DUT + Tracer

• DUT
• RTL for RISC-V processor
• Memory model and bus i/f
• Ability to load test program into memory

• Tracer
• Extracts information needed for DV

• E.g. PC, register values
• Bespoke to particular microarchitecture
• Often written by processor designers
• Can use RVVI-TRACE standard

© Imperas Software Ltd.Page 9

RISC-V Core RTL
(DUT) Tr

ac
er

Memory

Testbench

Trace compare: Process

• Run random generator (ISG) to create tests
• Simulate using ISS; write trace log file
• Simulate using RTL; write trace log file
• Run compare program to see differences / failures

© Imperas Software Ltd.Page 10

RISC-V
Instruction

Stream
Generator

RISCV.c

GCC/
LLVM

RISCV.elf

RISC-V RTL
& memory

Imperas_trace.log

compare
Imperas ISS
(cpu+memory)

DUT_trace.log

Trace compare: Pros and Cons

• Pros:
• Availability of generic RISC-V simulators (e.g. riscvOVPsimPlus from Imperas)
• Simple to set up and use

• Cons:
• Incompatible trace formats
• Must run RTL simulation to the end
• Cannot debug live
• Difficult to verify asynchronous events (e.g. interrupts, debug requests)
• Not a comprehensive DV strategy

© Imperas Software Ltd.Page 11

Agenda
• Background: RISC-V Design Verification challenges
• RISC-V design verification techniques

• Post-simulation trace file compare
• Self-checking tests and Signatures
• Step-and-compare
• Step-and-compare with asynchronous events
• Verification IP using RVVI
• Demo video

• Techniques from ASIC/SoC DV
• How to choose the right technique?

© Imperas Software Ltd.Page 12

Self-checking tests

• Components:
• RISC-V processor (DUT) and test

program; optionally ISS

• Process:
• Each test program checks its

results
• Prints message to log
• Or writes bit to memory

© Imperas Software Ltd.Page 13

RISC-V RTL
& memory

Application
<cross>.elf “Test Passed”

Signature comparison
• Components:

• RISC-V processor (DUT) and test
program; ISS

• Process:
• Run the test program on the DUT and

save the output (signature file)
• Run ISS, write signature file
• Compare/diff file results
• This is the approach taken by RISCV

International for their architectural
validation (“compliance tests”)

© Imperas Software Ltd.Page 14

Application
<cross>.elf

RISCV.org
Signature file

RISC-V RTL
& memory

Application
<cross>.elf

Compare

RISCV.org
Signature file

riscvOVPsimPlus
(cpu+memory)

Self-checking tests & Signatures:
Pros and Cons
• Pros:

• Simple to set up and execute
• Free ISS: https://github.com/riscv-ovpsim
• Free compiler: https://github.com/Imperas/riscv-toolchains

• RISC-V compliance tests freely available

• Cons:
• Directed tests cover a subset of processor functionality
• Not a complete DV strategy

© Imperas Software Ltd.Page 15

https://github.com/riscv-ovpsim
https://github.com/Imperas/riscv-toolchains

Agenda
• RISC-V Design Verification challenges
• RISC-V design verification techniques

• Post-simulation trace file compare
• Self-checking tests and Signatures
• Step-and-compare
• Step-and-compare with asynchronous events
• Verification IP using RVVI
• Demo video

• Techniques from ASIC/SoC DV
• How to choose the right technique?

© Imperas Software Ltd.Page 16

Step and compare

• Components
• Test programs (can be generated by an ISG)
• Processor reference model
• DUT and tracer
• RTL simulator
• Step-and-compare logic

© Imperas Software Ltd.Page 17

Processor reference model

• Reference model requirements:
• Configurable to select RISC-V ISA extensions
• Ability to add customizations (e.g. instructions, CSRs)
• Can run in lock-step with the RTL simulator (co-sim)
• Ability to “step” reference model at significant events (retire, trap)
• Functions to query state of model for comparison

© Imperas Software Ltd.Page 18

RISC-V
Base Model

User Extension:
custom

instructions
&

CSRs

DP
I

Step and compare: Process

• Reference model is encapsulated in a SystemVerilog testbench
• Control block steps both DUT and reference model
• Extracts data from each; compares results
• Differences reported immediately

© Imperas Software Ltd.Page 19

RISC-V
Instruction

Stream
Generator

RISCV.c

GCC/
LLVM

RISCV.elf

RISC-V RTL
& memory

Reference
model

Control
Step &

compare

Testbench

Results.log

Step-and-compare:
Pros and Cons
• Pros:

• Instruction by instruction lock-step comparison
• Comparison of execution flow, program data, internal state
• Errors are flagged immediately – no runaway simulations
• Detects synchronous bugs

• Cons:
• Step-and-compare logic can be fragile and error prone
• Does not easily verify asynchronous events

© Imperas Software Ltd.Page 20

Agenda
• Background: RISC-V Design Verification challenges
• RISC-V design verification techniques

• Post-simulation trace file compare
• Self-checking tests and Signatures
• Step-and-compare
• Step-and-compare with asynchronous events
• Verification IP using RVVI
• Demo video

• Techniques from ASIC/SoC DV
• How to choose the right technique?

© Imperas Software Ltd.Page 21

Step and compare + Async

• Components
• Test programs (can be generated by an ISG)
• Processor reference model
• DUT and tracer
• RTL simulator
• Asynchronous event drivers (e.g. UVM agents)
• Step-and-compare logic +

© Imperas Software Ltd.Page 22

Step and compare + Async:
Process

• Asynchronous events are driven into the DUT
• Step and compare logic informs reference model about

async events
© Imperas Software Ltd.Page 23

RISC-V
Instruction

Stream
Generator

RISCV.c

GCC/
LLVM

RISCV.elf

RISC-V RTL
& memory

Reference
model

Control
Step &

compare

Testbench

Results.log

Debug
driver

Interrupt
driver

Tr
ac

er

Async step and compare:
Pros and Cons
• Pros:

• All the benefits of step-and-compare
• Responds to asynchronous events

• Cons:
• Step-and-compare logic can be fragile and error prone
• Implementation of async event handling is not reusable
• Async events not connected to the reference - can conceal bugs
• Significant effort to implement and maintain

© Imperas Software Ltd.Page 24

Agenda
• Background: RISC-V Design Verification challenges
• RISC-V design verification techniques

• Post-simulation trace file compare
• Self-checking tests and Signatures
• Step-and-compare
• Step-and-compare with asynchronous events
• Verification IP using RVVI
• Demo video

• Techniques from ASIC/SoC DV
• How to choose the right technique?

© Imperas Software Ltd.Page 25

RISC-V Processor VIP

• Requirements:
• Configurable, extendable RISC-V processor reference model
• Standard interface to receive tracer data
• Standard way to receive asynchronous events
• Methods to configure, control and query the reference model
• Mechanism to compare DUT state with the reference model and report

errors/mismatches
• A method to verify DUT response to asynchronous events

© Imperas Software Ltd.Page 26

Standard interface: RVVI
• RVVI = RISC-V Verification Interface

• https://github.com/riscv-verification/RVVI

• Work has evolved over 2 years
• Imperas, EM Micro, SiLabs, OpenHW

• Standardize communication
between testbench and RISC-V VIP
• Two parts:

• RVVI-TRACE: signal level interface to
RISC-V VIP

• RVVI-API: function level interface to
RISC-V VIP

© Imperas Software Ltd.Page 27

RISC-V
Core
RTL

(DUT)

Simulation
control

RISC-V
Verification

IP

Testbench

RV
VI

-T
RA

CE
RV

VI
-A

PI

Tr
ac

er

https://github.com/riscv-verification/RVVI

RVVI-TRACE

• Defines information to be extracted by
tracer
• SystemVerilog interface
• Includes functions to handle

asynchronous events
• E.g. interrupts, debug req

• https://github.com/riscv-
verification/RVVI/tree/main/RVVI-VLG

© Imperas Software Ltd.Page 28

RISC-V
Core
RTL

(DUT)

RISC-V
Verification IPTr

ac
er

RV
VI

-T
RA

CE

valid
insn[..]

net_push()
net_pop()

. . .

https://github.com/riscv-verification/RVVI/tree/main/RVVI-VLG
https://github.com/riscv-verification/RVVI/tree/main/RVVI-VLG

RVVI-API

• Standard functions that RISC-V
processor VIPs need to implement
• Supports a step-and-compare

methodology
• C and SystemVerilog versions

available
• https://github.com/riscv-

verification/RVVI/blob/main/include
/host/rvvi/rvvi-api.h

© Imperas Software Ltd.Page 29

rvviRefEventStep()

rvviRefGprsCompare()

rvviRefPcCompare()

rvviRefCsrsCompare()

rvviRefGprGet()

rvviRefPcGet()

rvviRefInsBinGet()

rvviRefCsrGet()

RV
VI

-A
PI

ImperasDV components
Configurable reference

© Imperas Software Ltd.Page 30

RISC-V
Reference

Model

ImperasDV
Testbench

RV
VI

-T
RA

CE

trace2api

RV
VI

-A
PI

SystemVerilog C

Configuration

ImperasDV components
Control and Introspection

© Imperas Software Ltd.Page 31

RISC-V
Reference

Model

ImperasDV
Testbench

RV
VI

-T
RA

CE

trace2api

RV
VI

-A
PI

SystemVerilog C

Configuration

Synchronization

ImperasDV components
Asynchronous events

© Imperas Software Ltd.Page 32

RISC-V
Reference

Model

ImperasDV
Testbench

RV
VI

-T
RA

CE

trace2api

RV
VI

-A
PI

SystemVerilog C

Configuration

Synchronization

Predictive
engine

ImperasDV compoents
Comparison

April 23© Imperas Software Ltd.Page 33

RISC-V
Reference

Model

Scoreboard

ImperasDV
Testbench

RV
VI

-T
RA

CE

trace2api

RV
VI

-A
PI

SystemVerilog
Pass/Fail

determinationC

Configuration

Synchronization

Predictive
engine

ImperasDV components
Coverage and logging

© Imperas Software Ltd.Page 34

RISC-V
Reference

Model

Scoreboard

ImperasDV
Testbench

RV
VI

-T
RA

CE

trace2api

RV
VI

-A
PI

trace2log

SystemVerilog
Pass/Fail

determinationC

Configuration

Synchronization

Predictive
engine

trace2cov

Verification IP + RVVI: process
• Instantiate VIP in a testbench
• Connect tracer using RVVI-TRACE i/f
• DUT and reference model run the

same program
• Retire, trap events communicated

over RVVI
• Internal state continuously compared
• RVVI-TRACE monitored for async

events
• Predictive engine verifies legal

scenarios

© Imperas Software Ltd.Page 35

Verification IP using RVVI
• Pros:

• Errors are flagged immediately
• Finds synchronous and asynchronous bugs
• Checking is done for you
• Reusable across different core DV projects
• Interchangeable due to standard interface (RVVI)
• Ease of use
• Training, documentation, and support

• Cons:
• Cost of VIP licenses

© Imperas Software Ltd.Page 36

Agenda
• Background: RISC-V Design Verification challenges
• RISC-V design verification techniques

• Post-simulation trace file compare
• Self-checking tests
• Step-and-compare
• Step-and-compare with asynchronous events
• Verification IP using RVVI
• Demo video

• Techniques from ASIC/SoC DV
• How to choose the right technique?

© Imperas Software Ltd.Page 37

Demonstration

• DUT: OpenHW Group CV32E40X RISC-V processor
• Simulation: passing test
• Simulation: failing test
• Simulation: asynchronous event bug

© Imperas Software Ltd.Page 38

VIDEO: Passing test

• 1:22

© Imperas Software Ltd.Page 39

VIDEO: Failing test

• 2:59

© Imperas Software Ltd.Page 40

Asynchronous events

© Imperas Software Ltd.Page 41

VIDEO: Asynchronous

• 4:38

© Imperas Software Ltd.Page 42

Agenda

• Background: RISC-V Design Verification challenges
• RISC-V design verification techniques
• Techniques from ASIC/SoC DV

• Verification planning
• Functional coverage
• Assertions

• How to choose the right technique?

© Imperas Software Ltd.Page 43

Verification planning

• Start with the end in mind. What are your verification goals?
• Capture them in a plan

• How you will measure that they have been met?
• Directed test, coverpoint, assertion?
• Capture this in the plan too

• Metric-driven verification is popular
• Common metrics: code coverage, functional coverage, all tests passing, no new bugs

found for a period of time

• Sample open source verification plans:
• https://github.com/openhwgroup/core-v-verif/tree/master/cv32e40p/docs/VerifPlans

© Imperas Software Ltd.Page 44

Functional coverage

• Define goals for verification
• Measure that goals are achieved
• Measure the effectiveness of constrained-random stimulus
• Requires EDA tools to capture, merge, display coverage results
• Requires many simulations to achieve coverage closure
• Industry-standard best practice for ASIC/SoC

© Imperas Software Ltd.Page 45

RISC-V Functional Coverage

For a processor there are different types of functional coverage required:
• Standard ISA architectural features

• unpriv. ISA items: mainly instructions, their operands, their values
=> these are standard and the same for all RISC-V processors – it is the spec…

• Customer core design & micro-architectural features
• priv. ISA items, CSRs, Interrupts, Debug block, …
• pipeline, multi-issue, multi-hart, …
• Custom extensions, CSRs, instructions

© Imperas Software Ltd.Page 46

RISC-V Instructions (Standard ISA
architectural feature)

• There are many different instructions in the RV64 extensions:
• Integer: 56, Maths: 13, Compressed: 30, FP-Single: 30, FP-Double: 32
• Vector: 356, Bitmanip: 47 Krypto-scalar: 85
• P-DSP: 318
• For RV64 that is 967 instructions…

• Each instruction needs SystemVerilog covergroups and coverpoints
• 10-40 lines of SystemVerilog for each instruction

• 10,000-40,000++ lines of code to be written
• Not design or core specific

© Imperas Software Ltd.Page 47

© Imperas Software Ltd.Page 48

RV
VI

-T
RA

CE

Functions to convert
RVVI-TRACE to

Functional Coverage
structures

Functional Coverage
sampling

clk

RV
32

I

RV
32

M

RV
32

C

RV
32

F

RV
32

E

RV
32

D

RV
32

B

RV
32

Ks

RV
32

V

RV
32

P

RV
32

PM
P

RV
64

I

RV
64

M

RV
64

C

RV
64

F

RV
64

E

RV
64

D

RV
64

B

RV
64

Ks

RV
64

V

RV
64

P

RV
64

PM
P

RV
32

CS
R

RV
64

CS
R

…

…

Generating functional coverage source files from machine
readable ISA definition

RV
32

A
RV

64
A

Ex
ce

pt
io

ns
In

te
rr

up
ts

De
bu

g

Ex
ce

pt
io

ns
In

te
rr

up
ts

De
bu

g

U
se

r d
ef

in
ed

U
se

r d
ef

in
ed

M
M

U
M

M
U

Hy
pe

rv
iso

r
Hy

pe
rv

iso
r

Hand coded
SystemVerilog

Imperas RVFCgen

…

Generated SystemVerilog source

RISC-V
privilege and un-privilege

ISA machine readable
definition

Configuration:
xlen, csr, csrFields,

compliance, DV
extensions, options, …

Functional coverage examples

• riscvISACOV
• https://github.com/riscv-verification/riscvISACOV

• OpenHW Group core-v-verif
• https://github.com/openhwgroup/core-v-verif/tree/master/cv32e40s/env/uvme/cov

© Imperas Software Ltd.Page 49

https://github.com/riscv-verification/riscvISACOV
https://github.com/openhwgroup/core-v-verif/tree/master/cv32e40s/env/uvme/cov

Assertions

• Popular languages: SVA (SystemVerilog), PSL
• Concurrent assertions

• Rules to check behaviour over time
• Can be used to verify micro-architectural details
• Can be written by RTL designers
• Can be reused in formal verification

• “Cover” properties contribute to functional coverage

© Imperas Software Ltd.Page 50

Agenda

• RISC-V Design Verification challenges
• RISC-V design verification techniques
• Techniques from ASIC/SoC DV
• How to choose the right technique?

• DUT considerations
• Technology questions
• Hybrid methodologies

Confidential and Proprietary © Imperas Software Ltd.Page 51

DUT considerations affecting
verification method
• Is this a new design?
• Have you started from a commercial IP core?

• What is the magnitude of your change?
• What does your IP vendor recommend for verification?

• Are you using or modifying an open-source core?
• Can you find evidence of verification done to date?
• Can you reuse or build upon existing DV infrastructure?

• What is your goal?
• Research project, sell/provide IP, tape out

• What is your requirement for reuse?
• Across teams, future projects, etc.

© Imperas Software Ltd.Page 52

Technology considerations
affecting verification method
• Verification language

• SystemVerilog, VHDL, C/C++, Python?
• Some methodologies only available in a certain language

• E.g. functional coverage (SV), UVM (SV, Python), OSVVM (VHDL)

• UVM
• Widely adopted and industry proven
• Good body of knowledge / online resources available
• Strengths: virtual sequences, configuration database, messaging
• Weaknesses: limited choice of RTL simulation tools, heavy-weight solution

• Build it yourself, use open-source, or use Verification IP?
• Cost of VIP licenses vs cost of time and effort to build

© Imperas Software Ltd.Page 53

Hybrid methodologies

• Post-simulation trace file compare + VIP
• Use trace file compare for ISA / unprivileged tests
• Use verification IP for complex scenarios:

• Sync and Async exceptions
• Corner cases

• Make sure to combine functional coverage results

• Pros: can save on license costs
• Cons: effort required to build, maintain, and co-ordinate two separate

verification environments

© Imperas Software Ltd.Page 54

Thank you
• Any questions?

• Lee Moore
(moore@imperas.com)
• Aimee Sutton

(aimees@imperas.com)

© Imperas Software Ltd.Page 55

RISC-V
VIP

Functional
coverage

ISG

RVVI

mailto:moore@imperas.com
mailto:aimees@imperas.com

