

MIPS32 Malta Linux

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: OVP
Version: 1.4.1
Filename: OVP_MIPS_Linux_Platform_User_Guide.doc
Project: MIPS32 Malta Linux Platform
Last Saved: December 7, 2016
Keywords: OVP MIPS Malta Linux

© 2010 Imperas Software Limited www.OVPworld.org Page 1 of 115

MIPS32 Malta Linux Platform

Copyright Notice
Copyright © 2016 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or copied
only in accordance with the terms of the license agreement. No part of the software and
documentation may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written permission of Imperas
Software Limited, or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the documentation for its
internal use only. Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United
States of America. Disclosure to nationals of other countries contrary to United States law is
prohibited. It is the reader’s responsibility to determine the applicable regulations and to comply
with them.

Disclaimer
IMPERAS SOFTWARE LIMITED, AND ITS LICENSORS MAKE NO WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

© 2010 Imperas Software Limited www.OVPworld.org Page 2 of 115
.

MIPS32 Malta Linux Platform

Table of Contents

1 Preface..7

1.1 Related Documents ..7
2 Introduction ..8

2.1 Platform Definition Files..8
2.2 Demo Package Installers ..9

3 Virtual Platform Command Line and Standard Usage...10
4 Board Architecture ...11
5 Malta Peripheral Models Overview ...13

5.1 SmartLoaderLinux ...13
5.2 GT64120 (SysGT6412x)..14
5.3 Uart16450...14
5.4 PIIX4E (PciPIIX4Ebase)..14
5.5 IDE (PciIDE)..14
5.6 USB (PciUSB)..15
5.7 Power management (PciPM)..15
5.8 Interrupt Controller (IntPIIX4E8259) ..15
5.9 VGA (VgaCLGD54xx) ..16
5.10 PS2 Controller (Ps2Control) ..16
5.11 Real Time Clock (RtcMC146818) ...16
5.12 Malta FPGA (MaltaFPGA) ..17
5.13 Ethernet Controller (NicAM79C97x) ..17
5.14 System bus, PCI bus, ISA bus..17

6 Booting the pre-built Linux Kernel..19
6.1 Introduction ..19
6.2 Linux Kernel Versions and SMP Support..19
6.3 Execution Sequence ...19

6.3.1 Memory Initialization...19
6.3.2 Execution..20

6.4 Running the Platform ...21
6.4.1 Booting from ‘RamDisk’ Initial RAM Disk ..21
6.4.2 Terminating the Simulation..24

7 Installing Full Linux Distribution ..26
7.1 Simulation Invocation Script..26
7.2 Creating an Empty Disk Image ..26
7.3 Starting the Linux Kernel Boot ..27
7.4 Installing a Linux Distribution ...28

7.4.1 Configure Local..28
7.4.1.1 Select Language ...28
7.4.1.2 Select location ..29
7.4.1.3 Select Keyboard Layout ...29

7.4.2 Configure the Network...30
7.4.2.1 Select Host Name ...30
7.4.2.2 Select Domain Name..30

7.4.3 Download Debian Components ...31
7.4.3.1 Select Debian Archive Mirror Country..31

© 2010 Imperas Software Limited www.OVPworld.org Page 3 of 115
.

MIPS32 Malta Linux Platform

7.4.3.2 Select Debian Archive Mirror ..31
7.4.3.3 Choose a Proxy...32

7.4.4 Download Installer Components..32
7.4.4.1 Continue Without Kernel Modules ..32

7.4.5 Partition Disk..33
7.4.5.1 Start Partitioning ..33
7.4.5.2 Guided Partitioning of Entire Disk...33
7.4.5.3 Create IDE Master..34
7.4.5.4 Choose Partitioning ..34
7.4.5.5 Finish Partitioning of Disk ...35
7.4.5.6 Write Changes to Disk ...35

7.4.6 Setup Accounts...36
7.4.6.1 Root Password..36
7.4.6.2 Add User Account..37

7.4.7 Base System Installation ..39
7.4.7.1 Verifying the Release ...39
7.4.7.2 Retrieving Packages ...39
7.4.7.3 Continue Without Kernel ...40
7.4.7.4 Package Usage Survey ...40
7.4.7.5 System Selection ..41
7.4.7.6 No Boot Loader..41

7.4.8 Complete Installation ...42
7.5 Re-Start System..43

7.5.1 Boot directly from Disk Image...43
7.5.2 Disk Check ...44
7.5.3 Re-Boot from Disk Image ..45
7.5.4 Login ..45

7.6 Stopping the System...46
8 Disk Image Files and Initial RAM Disks ...47

8.1 Introduction ..47
8.2 Hard Disk Image ..47

8.2.1 Creation ..47
8.2.2 Accessing ...48

8.3 Initial RAM Disk..48
8.3.1 Extract Files from an initrd.gz..48
8.3.2 Building an initrd.gz...48
8.3.3 Modifying the boot sequence ...49
8.3.4 Example Operations When Running from Initial RAM Disk....................49

8.3.4.1 Make a writeable directory...49
8.3.4.2 Configure the NIC..49

9 Re-building the Debian Linux Kernel ..51
9.1 Introduction ..51
9.2 Building on a Linux Platform...51

9.2.1 Building the Cross-Compiler ...51
9.2.2 Building the Linux Kernel..53

9.2.2.1 Kernel Build Script...53
9.2.2.2 Kernel Build Configuration..54

© 2010 Imperas Software Limited www.OVPworld.org Page 4 of 115
.

MIPS32 Malta Linux Platform

9.3 Building on a Windows Platform...54
10 Debugging the Linux Kernel..55

10.1 Non-Intrusive Instrumentation ...55
10.2 Attaching the Debugger ...55

10.2.1 Starting the Platform Simulation..55
11 Transferring Files to Guest Linux ..57

11.1 Introduction ..57
11.2 Using an FTP Server ..57

11.2.1 Starting the Simulation...57
11.2.2 Adding Additional Linux Components ..58
11.2.3 Transfer Files..58

11.3 Using TFTP..59
11.3.1 Starting the Simulation...60
11.3.2 Adding Additional Linux Components ..60
11.3.3 Transfer Files into Guest Operating System ..61

12 Debugging Linux User Applications..63
12.1 Introduction ..63
12.2 Linux Installation ...63
12.3 Booting Linux ..63

12.3.1 Redirecting TCP Port ...63
12.3.2 Enabling TFTP File Transfer ...64

12.4 Compiling a User Program...64
12.4.1 Cross Compiler ToolChain...64
12.4.2 Cross Compiler Make Environment...64
12.4.3 Building the Application ..65

12.5 Adding Additional Linux Components ..65
12.6 Remote Debug using GDBserver...66

12.6.1 Starting GDB Server ..66
12.6.2 Connecting to GDB Server ..67

12.6.2.1 Using Eclipse..67
12.6.2.2 Using DDD from a Linux Host ..67
12.6.2.3 Using GDB from local Windows Host ..68

12.6.3 Debugging Multiple Applications in Parallel...70
12.7 Debug using Simulated GDB...71

13 Creating an Example Linux Kernel Module ..73
13.1 Introduction ..73
13.2 Pre-Requisites...73
13.3 Starting the Platform Simulation..73
13.4 Example Source..74

13.4.1 Included Header Files...74
13.4.2 Callback Table and Functions ..74

13.4.2.1 Table...74
13.4.2.2 Device Open...74
13.4.2.3 Device Close ..74
13.4.2.4 Device Read ...75
13.4.2.5 Device Write ..75

13.4.3 Device Module Initialize and Exit ...75

© 2010 Imperas Software Limited www.OVPworld.org Page 5 of 115
.

MIPS32 Malta Linux Platform

13.4.3.1 Device Initialization ...75
13.4.3.2 Device Exit ...76
13.4.3.3 Register Module ...76

13.5 Building the Device Driver ..76
13.5.1 Makefiles..76
13.5.2 Building..77

13.6 Installing the Kernel Module..77
13.7 Kernel Module Test Application..78

14 Debugging a Statically Linked Linux Kernel Module ...80
15 Debugging a Dynamically loaded Linux Kernel Module ..81

15.1 Pre-Requisites...81
15.2 Starting the Platform Simulation..81

15.2.1 Invoking with VLNV Library ..81
15.2.2 Invoking from ICM Platform ...82
15.2.3 Debug Startup...83

15.3 Registering Kernel Module with Debugger ...83
15.4 Debugging the Kernel Module...84

15.4.1 Register Kernel Module for Debugging...84
15.4.2 Installing the Kernel Module..84
15.4.3 Adding Breakpoints..85
15.4.4 Source Level Debug ...85

16 Restrictions and Caveats ..86
APPENDIX A ..87

A.1 Platform Command Line Arguments ...87
APPENDIX B ..88

B.1 Some Terms Explained ..88
APPENDIX C ..89

C.1 MIPS Kernel Configuration File ..89

© 2010 Imperas Software Limited www.OVPworld.org Page 6 of 115
.

MIPS32 Malta Linux Platform

1 Preface
This document describes the simulation model of a platform capable of running a release of
Linux cross compiled for the MIPS 32 bit architecture.

It provides a guide to running a Debian Linux Operating System release on the virtual platform.

1.1 Related Documents

This platform model uses peripherals from the OVP library. Consult the OVP library at
www.ovpworld.org for documentation for the status on individual models. The device vendors
should be consulted for individual device datasheets.

The processor cores are developed using the MIPS32 reference material available in general from
http://www.mips.com/products/product-materials/processor in particular the documents:

• MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32®
Architecture

• MIPS32® Architecture For ProgrammersVolume II: The MIPS32® Instruction Set
• MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource

Architecture
• Malta™ User’s Manual

© 2010 Imperas Software Limited www.OVPworld.org Page 7 of 115
.

http://www.ovpworld.org/
http://www.mips.com/products/product-materials/processor

MIPS32 Malta Linux Platform

2 Introduction
The MIPS Linux platform, based on the MIPS Malta™ development board, contains models of
hardware components to a sufficient level of accuracy to run the Linux operating system.
The Debian distribution of Linux is provided as an example kernel with other files that are used
in conjunction with the platform to show Linux booting.

The platform can make use of any MIPS32 processor model that provides the MMU
requirements of Linux. The default processor model configuration provided in this platform is the
4KEc device. The MIPS32 4KEc is a 32-bit CPU with a Memory Management Unit with user-
and protected-mode instructions to support a Virtual Memory Management System. Other 32-bit
MIPS32 cores can also be specified, these include the 24Kc, 24KEc and 34Kc (which is shown
booting SMP Linux). To see all the cores available look at the MIPS32 processor page in the
library documentation of an OVP installation.

The MIPS32 models available from OVP and used in the Malta platform have been verified as
part of the MIPS-Verified™ program.

As well as running the provided Linux kernel the platform is intended to allow the ease of
development of the Linux kernel, Linux user applications, Linux loadable kernel modules,
additional platform components and porting other Linux distributions.

OVP provides base intercept technology allowing the ‘semihosting’1 of native host features.

Imperas provides additional intercept technology, and modules using it to provide assistance with
Linux on the Malta platform. Imperas also provides multiprocessor and platform debug
capabilities.

2.1 Platform Definition Files
The platform is defined and downloaded as part of the standard OVPsim download. This is
available in source form from the download section of the website www.ovpworld.org.

When installed the platform source is found in

IMPERAS_HOME\ImperasLib\source\mips.ovpworld.org\platform\MipsMalta\1.0\platform

And the OVPsim executable for the platform in

IMPERAS_HOME\lib\IMPERAS_ARCH\ImperasLib\mips.ovpworld.org\platform\MipsMalta\1.0

1 Semihosting is a specific form of interception that is applied to low level functions in the C library being used.
These function such as open, read, write etc are intercepted to give Host native operation using the Host file system.

© 2010 Imperas Software Limited www.OVPworld.org Page 8 of 115
.

http://www.ovpworld.org/

MIPS32 Malta Linux Platform

The platform is described on the OVPworld website at

http://www.ovpworld.org/library/wikka.php?wakka=Mips32MaltaLinux

2.2 Demo Package Installers

The examples described in this document are available from the OVPworld website. They are
described at

http://www.ovpworld.org/library/wikka.php?wakka=Mips32MaltaLinuxBootingInstructions

From this page you will be able to download all the files you need to run the examples described.

There are two installations:

1. OVPsim_demo_linux_MipsMalta
2. OVPsim_demo_linux_MipsMalta_install

When installed new directories will appear in

 IMPERAS_HOME\Demo\OVPsim_linux_MipsMalta

and

IMPERAS_HOME\Demo\OVPsim_linux_MipsMalta_install

These directories include copies of the platform source and executable, the Linux kernel
‘vmlinux’, a pre-built ramdisk ‘initrd.gz’ and scripts to execute.

© 2010 Imperas Software Limited www.OVPworld.org Page 9 of 115
.

http://www.ovpworld.org/library/wikka.php?wakka=Mips32MaltaLinux
http://www.ovpworld.org/library/wikka.php?wakka=Mips32MaltaLinuxBootingInstructions

MIPS32 Malta Linux Platform

3 Virtual Platform Command Line and Standard Usage
The MipsMalta virtual platform includes a standard command line parser that supports all the
arguments supported by the simulator and also a number of platform specific arguments that are
detailed below.

Linux Kernel specific Arguments
Argument Value Description
kernel

elf file specify the linux kernel elf image to load

ramdisk Initial ramdisk Specify the
console Linux console Specify the console to be used, for example tty0, ttyS0
disk File
root
pagebits

General Arguments
finishonhalt
redir
nographics
tftproot
bootimage

© 2010 Imperas Software Limited www.OVPworld.org Page 10 of 115
.

MIPS32 Malta Linux Platform

4 Board Architecture
The platform is illustrated by the following block diagram. It is architected to closely represent
the MIPS Malta hardware in so far that

1. the binary image can be interchanged between the virtual platform and real silicon;
2. the software performs the same function on the virtual platform as it will on real silicon.

Figure 1 Platform Block Diagram

The CPU is connected to a local bus and a GT64120 general purpose system controller which
supports SDRAM, FLASH and provides a bridge to an on-board PCI bus.

The PCI bus services a 4-channel IDE disk controller, a USB interface, AM79C973 Ethernet
interface and a Cirrus CL GD5446 VGA graphics controller.

A bridge to an ISA bus supports a PS2 keyboard, mouse interface and two 16450 UARTs.

© 2010 Imperas Software Limited www.OVPworld.org Page 11 of 115
.

MIPS32 Malta Linux Platform

An FPGA specific to the MIPS Malta™ board controls an LED display, reads a set of switches
and implements a third 16450 UART.

Two cascaded 8259 interrupt controllers, as part of the Intel PXII4E device, route interrupts from
most devices to the MIPS32 int0 input.

The following diagram provides the general memory map of the platform. Some memory areas,
such as the PCI memory and PCI IO regions contain a number of mapped devices.

Figure 2 Basic Platform Memory Map

© 2010 Imperas Software Limited www.OVPworld.org Page 12 of 115
.

MIPS32 Malta Linux Platform

5 Malta Peripheral Models Overview
This section is intended to provide a brief overview of the operation of the peripherals that can be
configured and details of the attributes that may be used within the virtual MipsMalta platform to
change behavior. For complete descriptions of the peripherals the OVP documentation should be
consulted.

5.1 SmartLoaderLinux
The Linux SmartLoader is created as a peripheral but is used in the simulation to initialize the
platform. It is capable of providing all configuration information required by the Linux kernel.
This includes the kernel command line being created and written into memory, and boot options;
that is boot from a hard disk image or boot from an initial ramdisk.

Attribute Platform Model

Default
Description

kernel vmlinux None specify the linux kernel being loaded (this must be specified)
envpaddress None 0x80002000 change the address to which the kernel command lines parameters

are based
initrd initrd.gz 2 None specify the initial ram disk that should be loaded for booting
root /dev/hda 3 None specify booting from the hard disk image eg /dev/hda1
boardid None 0x420 Malta platform with CoreLV
memsize None 128Mbytes Set memory available to kernel
command None None Allows additional kernel command line parameters to be added
nonelinux None None Allows a none Linux kernel to be loaded and executed on the Malta

platform.
bootimage None None Replace the default reset vector code to change the manner in which

the Malta system boots.
Table 1: SmartLoader Attributes

The SmartLoader will read the Linux kernel to obtain the highest load address and the
kernel_entry symbol. The kernel_entry symbol is used to update the jump address in the boot
loader and the highest kernel load address is masked with the TLB page mask for the load
address of the initial ram disk file i.e. in the next page above the kernel.

Alternative boot code may be loaded by specifying the bootimage attribute. This should specify a
.fl file, as loaded via the parallel port on the actual hardware.

2 Specify the argument ‘initrd’ on the command line when invoking the Malta platform to select booting from the
initial ram disk initrd.gz. Without this argument the platform will boot from the file system on the disk specified by
Drive0Name on the IDE model.

© 2010 Imperas Software Limited www.OVPworld.org Page 13 of 115
.

MIPS32 Malta Linux Platform

5.2 GT64120 (SysGT6412x)
This is a system controller providing an interface between the local bus and SDRAM and PCI
buses. The model provides the PCI interface; including PCI configuration bus and PCI Interrupt
acknowledge bus connections and access cycles. The model does not provide the SDRAM
memory interface; this is provided as discrete memory in the platform.

Attribute Platform Model

Default
Description

There are no user definable attributes for this model
Table 2: GT64120 Attributes

5.3 Uart16450
This is a simple UART model for the 16450 devices. In this platform it can also be used to
maintain a log of its output as well as providing it to stdout.

Attribute Platform Model

Default
Description

outfile None None Log the characters to the log file specified by this attribute.
infile None None This file is used as input for the UART
registeralign None 1 Allows the 8bit UART registers to be aligned on non-byte boundaries
log None None The UART output is logged into the simulator stdout. There is no

UART input.
portnum None None Port number allows the connection to an external application
Table 3: UART16450 Attributes

5.4 PIIX4E (PciPIIX4Ebase)
The PIIX4E is modeled using a number of discrete component models such that the PIIX4E
model itself contains only the base functionality that is common, for example the PCI
configuration registers.

Attribute Platform Model

Default
Description

There are no user definable attributes for this model
Table 4: PIIX4E Attributes

5.5 IDE (PciIDE)
This is a simple IDE model, which resides on the PCI bus, allowing the connection of up to 4
devices. Each device is separately created as an image of the disk file structure.
The model will attempt to open 3 drives, as specified below; if any device cannot be opened a
warning will be generated.

If one of the devices contains the file system for booting the SmartProm ‘root’ attribute should be
specified accordingly.

© 2010 Imperas Software Limited www.OVPworld.org Page 14 of 115
.

MIPS32 Malta Linux Platform

Attribute Platform Model

Default
Description

PCIslot 10 None Set the PCI Slot for the
PCIFunction 1 None Set the PCI Function number
Drive0Name mipsel_hda None The name of the file for the first drive.
Drive1Name mipsel_hdb None The name of the file for the second drive.
Drive2Name mipsel_cd None The name of the file for the third drive.
Drive3Name None None The name of the file for the fourth drive.
Table 5: IDE Attributes

5.6 USB (PciUSB)
The USB model does not provide USB functionality. This model provides the PCI interface
necessary to register the device and provides NULL data when any register is read.

Attribute Platform Model

Default
Description

PCIslot 10 None Set the PCI Slot for the
PCIFunction 2 None Set the PCI Function number
Table 6: PIIX4 USB Attributes

5.7 Power management (PciPM)
The power management model does not provide power management functionality. This model
provides the PCI interface necessary to register the device and provides NULL data when any
register is read.

Attribute Platform Model

Default
Description

PCIslot 10 None Set the PCI Slot for the
PCIFunction 3 None Set the PCI Function number
Table 7: PIIX4 Power Management Attributes

5.8 Interrupt Controller (IntPIIX4E8259)
The interrupt controller used in the platform is contained within the PIIX4E device but is
modeled as a discrete device. It comprises of two individual Intel 8259 interrupt controller
models that are cascaded.
A single interrupt is generated to MIPS32 processor, which in turn causes a PCI Interrupt
Acknowledge cycle that provides a vector indicating the interrupting device with the highest
priority.

Attribute Platform Model

Default
Description

There are no user definable attributes for this model
Table 8: Interrupt Controller Attributes

© 2010 Imperas Software Limited www.OVPworld.org Page 15 of 115
.

MIPS32 Malta Linux Platform

5.9 VGA (VgaCLGD54xx)
This model creates a Cirrus CL GD 54xx and utilizes SDL to create an output window to which
the VGA is generated.

Attribute Platform Model

Default
Description

PCIslot 18 None Set the PCI Slot for the
scanDelay 50000 200 This is the rate at which the frame data is displayed (frame rate)
noGraphics 0 0 When set the SDL interface is disabled and no display is created.
Title “OVPsim

MIPS32
Malta”

“CL
GD54xx”

This is the title displayed on the graphic screen

Table 9: VGA Attributes

5.10 PS2 Controller (Ps2Control)

The PS2 Controller uses SDL for mouse and keyboard input. It must be used in conjunction with
the VGA peripheral device that generates the SDL output window with which it interacts.

The SDL interface supports polling only and so the PS2 Controller polls the SDL interface for
activity on the mouse or keyboard. The poll rate is configurable.

Attribute Platform Model

Default
Description

disableInput 0 0 When set this causes the input form the PS2 Controller to be disabled.
This is used mainly for testing.

pollPeriod 50000 2000 The value provided for the poll period is the rate at which the PS2
input devices are polled for input. The value is in micro seconds.

grabDisable 0 0 Stop the mouse being grabbed when clicked in window
Table 10: PS2 Controller Attributes

5.11 Real Time Clock (RtcMC146818)

This is a model of an MC146818 real time clock device.

Attribute Platform Model

Default
Description

timefromhost 0 0 When set this causes the current time to be read from the host during
initialization.

Table 11: Real Time Clock Attributes

© 2010 Imperas Software Limited www.OVPworld.org Page 16 of 115
.

MIPS32 Malta Linux Platform

5.12 Malta FPGA (MaltaFPGA)

This is a model of the FPGA device that is available on the Malta platform.

Attribute Platform Model

Default
Description

stoponsoftreset 1 0 If set when the soft reset register is written with a special value it
causes the simulation to terminate.

switches None 0 Set the value of the Malta ‘switches’ accessed by the FPGA
Table 12: Malta FPGA Attributes

5.13 Ethernet Controller (NicAM79C97x)

The Ethernet controller is a partial model of the AMD AM79C97xx series device.
It has sufficient capabilities to support a Linux operating system, specifically the Debian
distribution of Linux 2.6.
In addition, it models a virtual Ethernet with a restricted bridge to the real Ethernet of the host
(using the publicly available SLIRP package).
Specifically, the bridge emulates a DHCP server which allocates the NIC an IP address of
10.0.2.15 and performs Network Address Translation onto the host network of outgoing and
incoming TCP and UDP packets. ICMP packets are blocked (so for example, ping does not
work) and tftp requests are all handled in the model by a simple tftp server. Static address
translations for can be set up for incoming requests on particular ports using the redir argument
to the model.

Attribute Platform Model Default Description
PCISlot 11 None Define the PCI slot in which the Ethernet card is installed
PCIfunction 0 None Define the PCI function of the device
ethereal 0 Packet logging using ethereal format
polldelay 1000 1000 The rate at which the network is polled
MAC None 52:54:00:12:34:56 Define the MAC address of the NIC
redir None None Specify and open ports on the simulated system. Example usage:

1. exposing gdb-server ports for attaching debuggers to user
applications or
2. exposing a port for an ftp connection

tftpPrefix None None Enable TFTP and define the tftp root on the host
localNet 10.0.2.0 Change the local network address
Table 13: Ethernet Controller Attributes

5.14 System bus, PCI bus, ISA bus
The Malta™ platform bridges a limited address range from the System bus to PCI bus and
bridges a different range from PCI bus to the System bus. This allows the CPU to access part of
the PCI address range and for PCI bus masters to DMA data directly into the main memory.

OVPsim models address spaces rather than physical busses. Therefore there is no bridge from
PCI to system bus; all devices share the same address space. When a PCI device is programmed

© 2010 Imperas Software Limited www.OVPworld.org Page 17 of 115
.

MIPS32 Malta Linux Platform

to decode a particular address range, it adjusts the range according to the base address of the
bridge. The net effect is the same, but the model can allow mappings which are not possible in
the hardware.

Similarly, the ISA bus is not modeled explicitly; its devices appear on the PCI bus according to
PCI configuration.

© 2010 Imperas Software Limited www.OVPworld.org Page 18 of 115
.

MIPS32 Malta Linux Platform

6 Booting the pre-built Linux Kernel

6.1 Introduction
The MipsMalta platform is designed to boot a Linux kernel from a number of sources. The
OVPsim_demo_linux_MipsMalta demo provides everything necessary to boot a pre-built Linux
kernel using a simple ram disk (also provided)

The Debian linux kernel is built for the Malta platform and the MIPS32 little endian device using
a distribution available from Debian and can be found in the file named vmlinux. This image is
built as a standard image and the same file runs on the virtual platform and the actual MIPS
silicon device with real hardware.

Linux can boot from an initial ram disk file in a compressed form and extracted into simulated
memory. This file is called initrd.gz and is provided as part of OVPsim_demo_MipsMalta. It
provides a basic set of commands using the BusyBox system with a minimal file system. As
downloaded the initial ramdisk will boot to a shell prompt.

6.2 Linux Kernel Versions and SMP Support

This example is provided with a Debian distribution of the 2.6.23.11 Linux kernel.

The same platform has also been used with a Debian distribution of the 2.6.24 Linux kernel and a
MIPS Technologies Incorporated distribution of the 2.6.29.4-1 Linux Kernel.

The MIPS32 processor model can support the MIPS single core processors, for example 4Kc and
24KEc and also the MP core processors, for example the 34Kc. The Linux kernel is built with
SMP support enabled. Thus if an MP core supporting SMP is selected as the processor variant
Linux will boot as SMP.

6.3 Execution Sequence
There is a specific sequence of events carried out by the OVP simulator and the ‘SmartLoader’
peripheral on startup.

6.3.1 Memory Initialization
The following memory initialization is performed:

• Debian Linux kernel image (vmlinux) is loaded directly into memory using addressing
contained in the elf file by the OVP simulator.

• Bootstrap code is created at the MIPS processor reset vector by the “SmartLoader”
peripheral component.

• A kernel command line is created in memory by the “SmartLoader” peripheral
component.

© 2010 Imperas Software Limited www.OVPworld.org Page 19 of 115
.

MIPS32 Malta Linux Platform

6.3.2 Execution
Execution starts from the MIPS processor reset vector at virtual address 0xbfc00000.
The generated bootstrap code resides at this address and performs some basic setup before a call
into the Linux kernel, at the kernel_entry point.

© 2010 Imperas Software Limited www.OVPworld.org Page 20 of 115
.

MIPS32 Malta Linux Platform

6.4 Running the Platform
6.4.1 Booting from ‘RamDisk’ Initial RAM Disk
To run this demo obtain and install the OVPsim_demo_linux_MipsMalta installer for your
platform from www.ovpworld.org. Go to the directory:

IMPERAS_HOME/Demo/OVPsim_linux_MipsMalta

and launch the simulation with the batch file ‘RUN_MipsMalta.bat’ on Windows or the sh script
‘RUN_MipsMalta.sh' on Linux.

This will execute the platform executable passing in the Linux kernel as the first parameter and
initrd as an additional parameter to switch the boot mode to initial ram disk.

The supplied initial ramdisk boots to a shell prompt.

The execution of the platform will commence until the shell is reached, as shown in Figure 3:
Booting to Shell from Initial Ram Disk

Figure 3: Booting to Shell from Initial Ram Disk

© 2010 Imperas Software Limited www.OVPworld.org Page 21 of 115
.

http://www.ovpworld.org/

MIPS32 Malta Linux Platform

From the shell prompt we can interrogate the proc file system, as shown in Figure 4: Shell
Prompt, just as we would do running on the hardware platform.

Figure 4: Shell Prompt

© 2010 Imperas Software Limited www.OVPworld.org Page 22 of 115
.

MIPS32 Malta Linux Platform

The simulation may also be launched with the batch file ‘RUN_MipsMaltaSMP.bat’ on Windows
or using the sh script ‘RUN_MipsMaltaSMP.sh' on Linux. This will select the 34Kc MIPS32
processor variant that supports SMP.

The execution of the platform will commence until the shell is reached, as shown in Figure 5:
Booting to Shell from Initial Ram Disk (SMP)

Figure 5: Booting to Shell from Initial Ram Disk (SMP)

© 2010 Imperas Software Limited www.OVPworld.org Page 23 of 115
.

MIPS32 Malta Linux Platform

6.4.2 Terminating the Simulation

We can terminate the simulator using CTRL-C. This should be done in the window from which
the simulation was originally invoked i.e. not the simulated console window. Alternatively the
simulated console window can simply be closed which will also terminate the simulation.

The two windows that will be present during the simulation are shown in Figure 6: Execution and
Simulated Console Windows

Figure 6: Execution and Simulated Console Windows

When terminated the simulator provides some final execution statistics that includes the
instructions executed by the processor and the performance achieved, as shown in Figure 7a:
Execution Statistics Output

© 2010 Imperas Software Limited www.OVPworld.org Page 24 of 115
.

MIPS32 Malta Linux Platform

Figure 7a: Execution Statistics Output Linux Booted

Figure 8b: Execution Statistics Output SMP Linux Booted

© 2010 Imperas Software Limited www.OVPworld.org Page 25 of 115
.

MIPS32 Malta Linux Platform

7 Installing Full Linux Distribution
In addition to the simple preconfigured ram disk version described in section 6 the
OVPsim_demo_linux_MipsMalta_install demo allows you to download and configure your own
full Linux kernel in a simulated platform.

The supplied initial ramdisk allows you to perform a full Linux installation using a Debian Linux
distribution site. This requires access to the internet from the machine you are running the
simulation in order to download the required files for the Linux installation.

7.1 Simulation Invocation Script
Obtain the OVPsim_demo_MipsMalta_install package from www.ovpworld.org and install it on
your system. Go to the directory:

 IMPERAS_HOME/ Demo/OVPsim_linux_MipsMalta_install

and launch the simulation with the script file ' RUN_InstallLinux.bat' on Windows or the shell
script RUN_InstallLinux.sh' on Linux.

This will execute the platform, passing in the Linux kernel, specifying the ramdisk initrd.gz to
set the boot mode and --finishonhalt to stop the simulation if a halt command is issued in the
simulated kernel3. In addition the --wallclock option is selected so the simulation will not run
faster than realtime, which can cause premature timeouts when accessing the internet through the
semihosting interface..

7.2 Creating an Empty Disk Image

When the script is invoked you will first be prompted to enter the size of disk that should be
reated. This should be at least 1 Giga Byte. c

Figure 9, shows the creation of a 4GB disk image.

Figure 9: Create 4GB blank Disk Image

3 The halt command actually invokes a write with a special value to a register in the Malta FPGA. It is this write that
causes the simulation to finish.

© 2010 Imperas Software Limited www.OVPworld.org Page 26 of 115
.

http://www.ovpworld.org/

MIPS32 Malta Linux Platform

7.3 Starting the Linux Kernel Boot

Once the disk is created the script will start the simulation of the Malta platform. The initial boot
sequence is the same as the other example, with the output from the kernel logged to the console
as shown in Figure 10: Kernel Booting from Install INITRD:

Figure 10: Kernel Booting from Install INITRD

© 2010 Imperas Software Limited www.OVPworld.org Page 27 of 115
.

MIPS32 Malta Linux Platform

7.4 Installing a Linux Distribution

A typical Linux installation is performed following the prompts of the graphical user interface
provided by the VGA peripheral in the virtual platform.

This section describes the full installation sequence. To complete a full installation will take
around 1-2 hours.

7.4.1 Configure Local
7.4.1.1 Select Language

© 2010 Imperas Software Limited www.OVPworld.org Page 28 of 115
.

MIPS32 Malta Linux Platform

7.4.1.2 Select location

7.4.1.3 Select Keyboard Layout

© 2010 Imperas Software Limited www.OVPworld.org Page 29 of 115
.

MIPS32 Malta Linux Platform

7.4.2 Configure the Network

7.4.2.1 Select Host Name
You should choose a hostname that this installation will be known by. This will be the name that
will be seen on your real network when running the simulation.

7.4.2.2 Select Domain Name

© 2010 Imperas Software Limited www.OVPworld.org Page 30 of 115
.

MIPS32 Malta Linux Platform

7.4.3 Download Debian Components
7.4.3.1 Select Debian Archive Mirror Country

7.4.3.2 Select Debian Archive Mirror

© 2010 Imperas Software Limited www.OVPworld.org Page 31 of 115
.

MIPS32 Malta Linux Platform

7.4.3.3 Choose a Proxy

7.4.4 Download Installer Components
7.4.4.1 Continue Without Kernel Modules
If prompted to continue without kernel modules, select YES. The kernel we are providing is built
from the Linux 2.6.23 release. The distribution is not yet available at this release. This does not
cause any problems for the installation.

© 2010 Imperas Software Limited www.OVPworld.org Page 32 of 115
.

MIPS32 Malta Linux Platform

7.4.5 Partition Disk
7.4.5.1 Start Partitioning
The initial disk image that we have created is blank and so contains no information that can be
read form the Linux kernel to identify it. We shall, therefore, allow partitioning to continue.

7.4.5.2 Guided Partitioning of Entire Disk

© 2010 Imperas Software Limited www.OVPworld.org Page 33 of 115
.

MIPS32 Malta Linux Platform

7.4.5.3 Create IDE Master

7.4.5.4 Choose Partitioning
Choose the partitioning of the disk. Unless you have specific requirements, please select the
default option.

© 2010 Imperas Software Limited www.OVPworld.org Page 34 of 115
.

MIPS32 Malta Linux Platform

7.4.5.5 Finish Partitioning of Disk

7.4.5.6 Write Changes to Disk
Until this option there have been no changes written to the disk image.

© 2010 Imperas Software Limited www.OVPworld.org Page 35 of 115
.

MIPS32 Malta Linux Platform

7.4.6 Setup Accounts
7.4.6.1 Root Password

© 2010 Imperas Software Limited www.OVPworld.org Page 36 of 115
.

MIPS32 Malta Linux Platform

7.4.6.2 Add User Account

© 2010 Imperas Software Limited www.OVPworld.org Page 37 of 115
.

MIPS32 Malta Linux Platform

© 2010 Imperas Software Limited www.OVPworld.org Page 38 of 115
.

MIPS32 Malta Linux Platform

7.4.7 Base System Installation
7.4.7.1 Verifying the Release
The installation of the base system will now progress.

7.4.7.2 Retrieving Packages
This will take the longest period of time …

© 2010 Imperas Software Limited www.OVPworld.org Page 39 of 115
.

MIPS32 Malta Linux Platform

7.4.7.3 Continue Without Kernel
The Linux kernel is provided separately from the release. We, therefore, can continue without
installing a kernel.

7.4.7.4 Package Usage Survey
Select NO to not participate in the package usage survey.

© 2010 Imperas Software Limited www.OVPworld.org Page 40 of 115
.

MIPS32 Malta Linux Platform

7.4.7.5 System Selection
The system selection determines the default set of packages that will be installed.

7.4.7.6 No Boot Loader
The boot loader is provided as part of the Malta platform, so continue the installation without it.

© 2010 Imperas Software Limited www.OVPworld.org Page 41 of 115
.

MIPS32 Malta Linux Platform

7.4.8 Complete Installation

At this point the installer will make a request to reboot the system. The simulation platform is set
up so that it does not perform a reboot but finishes the simulation, with the statistics of the
simulator run being displayed on exit.

© 2010 Imperas Software Limited www.OVPworld.org Page 42 of 115
.

MIPS32 Malta Linux Platform

7.5 Re-Start System
7.5.1 Boot directly from Disk Image
Run the platform by executing the batch file RUN_BootLinux.bat or shell script
RUN_BootLinux.sh that is provided.

This will execute the platform in the same way as the previous script but will

1. omit the disk image creation stage, and
2. boot from the disk image rather than the initial ram disk

The kernel starts booting in the same way as before by detecting and configuring the hardware in
the platform. The boot then continues from the disk image with the full Linux installation.

The file modules.dep is missing from the installation and so modprobe fails, this is expected
because the kernel modules were not installed as part of the installation. These exist as a separate
kernel image.

INIT boots the system …

© 2010 Imperas Software Limited www.OVPworld.org Page 43 of 115
.

MIPS32 Malta Linux Platform

7.5.2 Disk Check
We have created a new disk and upon booting the Linux kernel performs a disk check using fsck.

FSCK requests that the system should restart because of the changes that were made to the disk.

© 2010 Imperas Software Limited www.OVPworld.org Page 44 of 115
.

MIPS32 Malta Linux Platform

7.5.3 Re-Boot from Disk Image
Again run the platform by executing the batch file RUN_BootLinux.bat (or .sh) that is provided.

7.5.4 Login
This time, and for subsequent boots, it will proceed to the login prompt. We have a fully working
Linux installation available to use.

Once logged in we can use this Linux operating system like we would any other.

© 2010 Imperas Software Limited www.OVPworld.org Page 45 of 115
.

MIPS32 Malta Linux Platform

7.6 Stopping the System
The disk image will be written by the disk controller at regular intervals. However, to ensure that
everything on the disk is in the correct state the simulation should be stopped using the halt
command when logged in as root. This will ensure all data is flushed to the disk image and that
no corruption will occur. When logged in as root issue the command

> halt

The halt command, when used in conjunction with the --finishonhalt, argument will cause the
simulation to stop. If the --finishonhalt, argument is not used you will have to CTRL-C the
simulator in the command shell or close the VGA graphics display.

© 2010 Imperas Software Limited www.OVPworld.org Page 46 of 115
.

MIPS32 Malta Linux Platform

8 Disk Image Files and Initial RAM Disks

8.1 Introduction
The MipsMalta platform can be configured to boot from an initial ram disk or from a hard disk
image, as has been shown previously in this document. This section provides some information
on the creation and maintenance of these files.

A windows executable is provided to create a blank disk image or standard Linux tools can be
used to create and modify the Linux disk images and initial ram disks used in the simulated
Linux environment.

8.2 Hard Disk Image
A single file is used to encapsulate a file system as accessed by the disk interface of the PciIDE
peripheral component.
By default the platform attempts to access three disks, mipsel_hda, mipsel_hdb and mipsel_cd.
The main disk for booting will be mipsel_hda, a warning will be created if disks are not
available.

8.2.1 Creation
An executable, create-image.<arch>.exe, is provided as part of the installation of
OVPsim_demo_linux_MipsMalta_install to be used to create a blank disk image. This image
can be accessed by the IDE controller model in the Malta platform and populated.

Alternatively the disk image can be created using standard Linux tools.

The following example command creates a disk image called ‘newDisk’ that is an empty file with
1024 blocks of 1024 bytes

dd if=/dev/zero of=newDisk count=1024 bs=1024

To create an ext3 file system

/sbin/mkfs.ext3 newDisk

To access the file system we need to mount it onto a local directory

mkdir mnt
mount -o loop newDisk mnt

We may now copy files into the mounted disk image. When complete unmount the directory we
used

cp myFile mnt
umount mnt

© 2010 Imperas Software Limited www.OVPworld.org Page 47 of 115
.

MIPS32 Malta Linux Platform

8.2.2 Accessing

If we have a diskimage that we have been using and we wish to access files on the disk we can
use standard Linux tools.

List the partitions and note the offset of the partition you want to access

/sbin/sfdisk -l -uS diskimage

Use the offset to calculate an offset in bytes; for example offset of 63 would yield a byte offset of
63 * 512 = 32256

Make a directory to which the disk can be mounted and mount the disk. You will need to be root
to perform the mount operation.

mkdir mnt
mount -o loop,offset=32256 diskimage mnt

It is now possible to access the partition in the disk image through the mount-point mnt.

8.3 Initial RAM Disk
8.3.1 Extract Files from an initrd.gz
This sequence of commands will allow access to the files in an initial ramdisk.

gzip -d initrd.gz
mkdir romfs
mount -o loop initrd romfs

Move files from romfs to use in a new file system

cd romfs
tar cf - .
cd ../<destination>
tar xf -

Now the files are available in <destination>. This can be used as the source for creating a new
variant of the initial ram disk
`
8.3.2 Building an initrd.gz
Create a directory into which your files can be written

mkdir ramfs

copy your files into ramfs (you might want to start by extracting an existing initrd)

/sbin/mkfs.cramfs ramfs initrd
gzip initrd
chmod 777 initrd.gz

© 2010 Imperas Software Limited www.OVPworld.org Page 48 of 115
.

MIPS32 Malta Linux Platform

8.3.3 Modifying the boot sequence
The boot sequence is controlled by a single script in sbin/init. With the files from the initrd.gz file
extracted it is simple to edit this file

edit ramfs/sbin/init

8.3.4 Example Operations When Running from Initial RAM Disk
There is very limited functionality when running from the initial ram disk. However the
following are useful operations that can be performed.

8.3.4.1 Make a writeable directory

When booted from an initrd image, the root FS is read-only. To make a read/write directory:

mount -t tmpfs /dev/ram0 /t2

Now /t2 is a writable directory on the ram disk.

⇒ Any files written here will be lost when simulation is terminated.

8.3.4.2 Configure the NIC

The following commands will enable the Ethernet NIC on the simulated Malta platform.

ifconfig lo up
ifconfig eth0 10.0.2.15 up
route add default gw 10.0.2.2

We can now access out into the real world …

Example using nc to fetch a page from google.com.

Notes:

1. nslookup was used on a Linux machine to get the ip address for google.com.
2. There is no further prompt after the nc command
3. Two <Carriage Returns> are required after the GET command.

© 2010 Imperas Software Limited www.OVPworld.org Page 49 of 115
.

MIPS32 Malta Linux Platform

In the shell use the nc command and enter the following

nc 64.233.167.99 80
 GET / HTTP/1.0

The result of this command provides information from the www.google.com website, as shown
in the following figure.

© 2010 Imperas Software Limited www.OVPworld.org Page 50 of 115
.

MIPS32 Malta Linux Platform

9 Re-building the Debian Linux Kernel

9.1 Introduction
This section provides some example instructions to re-build the vmlinux kernel from a Debian
distribution. The build is carried out on a Linux platform.

In order to rebuild the Linux kernel it is first necessary to build the Cross-Compiler

9.2 Building on a Linux Platform

9.2.1 Building the Cross-Compiler
To build a cross-compiler it is first required to obtain binutils and compiler source. In this
example we have used binutils-2.16.1 and gcc-3.4.4. The version of gcc used is dependent upon
the support for the target required. The targets we are building are to support MIPS32 Little
Endian and MIPS Malta platform.

The information contained in this section is derived from the information available at
http://www.linux-mips.org/wiki/Toolchains#GCC

In this example we have extracted the binutils and the gcc source into parallel directories, as
shown in the following figure

These are then compiled and installed. We created a script, Build.sh, to store this script.

The build script (Build.sh) for the Cross-Compiler looks like:

#!/bin/sh

here=$(pwd)
install=$(dirname $here)/install
mkdir -p ${install}

First build a linux compiler
export WDIR=/tmp
#export TARGET=mipsel-unknown-linux-gnu
export PREFIX=${install}

export PATH=${PATH}:${PREFIX}/bin

TARGETS="mipsel-unknown-linux-gnu mipsel-malta-linux"
TARGETS=mipsel-malta-linux
for TARGET in $TARGETS; do

© 2010 Imperas Software Limited www.OVPworld.org Page 51 of 115
.

http://www.linux-mips.org/wiki/Toolchains#GCC

MIPS32 Malta Linux Platform

 rm -rf b-b
 mkdir b-b
 pushd b-b
 ../binutils-2.16.1/configure --target=$TARGET --prefix=$PREFIX
 make
 make install
 popd

 rm -rf b-gcc
 mkdir b-gcc
 pushd b-gcc
 ../gcc-3.4.4/configure --target=$TARGET --prefix=$PREFIX \
 --enable-languages=c --without-headers \
 --with-gnu-ld --with-gnu-as \
 --disable-shared --disable-threads
 make -j2
 make install
 popd
done

After execution an install directory is created that includes the directories shown in the following
figure:

© 2010 Imperas Software Limited www.OVPworld.org Page 52 of 115
.

MIPS32 Malta Linux Platform

The bin directory provides tools specific to the mips linux platform.

9.2.2 Building the Linux Kernel
9.2.2.1 Kernel Build Script

The build script we created for the Linux Kernel looks like:

#!/bin/sh

export CROSS_COMPILE_V=/path/to/kernel/install/bin/mipsel-unknown-linux-gnu-

© 2010 Imperas Software Limited www.OVPworld.org Page 53 of 115
.

MIPS32 Malta Linux Platform

rm -rf linux-2.6.23.11
tar xvfz linux-2.6.23.11.tar.gz
cp kernel-config linux-2.6.23.11/.config
pushd linux-2.6.23.11
 make CROSS_COMPILE='distcc $(CROSS_COMPILE_V)' CONFIG_DEBUG_INFO=1 -j16
popd

9.2.2.2 Kernel Build Configuration
The kernel configuration is contained within the kernel-config file. This defines all the build
parameters for the kernel. This was initially created using ‘make config’ for the Linux Kernel and
is subsequently stored and copied into the source directory. The actual file used is provided in
appendix C.1 MIPS Kernel Configuration File of this document.

9.3 Building on a Windows Platform
The building of the Linux Kernel on a Windows platform is not supported.

© 2010 Imperas Software Limited www.OVPworld.org Page 54 of 115
.

MIPS32 Malta Linux Platform

10 Debugging the Linux Kernel

10.1 Non-Intrusive Instrumentation
The Imperas Professional tools provide the VAP (Verification, Analysis and profiling) Tools
which provide extensive tools useful for debugging a Linux kernel, including:

• Logging of all exceptions (including TLB)
• Simulation termination on a kernel panic
• Simulation termination on a defined kernel execution event; for example exec of

/sbin/halt
• Visibility of kernel execution without console mips32 linux kernel

To find out more about the Imperas Professional tools please contact www.imperas.com.

10.2 Attaching the Debugger
See the OVP documents available at www.ovpworld.org to guide the use of a debugger with the
MipsMalta platform.

• OVP Debugging Applications with GDB User Guide
• OVP Debugging Applications with Eclipse User Guide

10.2.1 Starting the Platform Simulation

The MipsMalta platform should be started with an additional command line argument to open a
port to connect a debugger to.

A batch file provided with the MIPS Malta Platform demonstration should be modified to add
"--port 9998" that is used to specify an arbitrary port to be opened for connection to a debugger.

The Windows batch file RUN_BootLinux.bat for Windows users is shown modified below

...

%PLATFORM_VLNV% ^
 --verbose ^
 --ramdisk initrd.gz ^
 --finishonhalt ^
 --kernel vmlinux ^
 --console tty0 ^
 --console tty0 ^
 --override MipsMalta/mipsle1/variant=34Kc ^
 --output imperas.log --port 9998

:end
pause

© 2010 Imperas Software Limited www.OVPworld.org Page 55 of 115
.

http://www.imperas.com/
http://www.ovpworld.org/

MIPS32 Malta Linux Platform

the same modification can be made to the equivalent Linux shell script or to any of the other
scripts provided in the demo directory.
The debugger is then attached to this port as described in one of the debugging documents
referenced above. The kernel can be thought of as an application running directly on the
processor.

© 2010 Imperas Software Limited www.OVPworld.org Page 56 of 115
.

MIPS32 Malta Linux Platform

11 Transferring Files to Guest Linux

11.1 Introduction
The ability to transfer files compiled on the host system into the Guest, simulated, Linux system
is crucial to provide an efficient development environment.

This section provides two methods provided by the MipsMalta platform for transferring files. It
assumes you have already set up a full Linux Install as explained in section 7 Installing Full
Linux Distribution.

11.2 Using an FTP Server
11.2.1 Starting the Simulation

Run the platform, with the script RUN_BootLinuxVNC provided in the demo directory
OVPsim_linux_MipsMalta_install to pass an additional parameter ‘--redir’ to set redirection of
the tcp port 11001 that will be used for the connection between the gdb server and a gdb instance
later.

For example, on Windows

%PLATFORM_VLNV% ^
 --verbose ^
 --ramdisk initrd.gz ^
 --finishonhalt ^
 --kernel vmlinux ^
 --console tty0 ^
 --output imperas.log ^
 --wallclock ^
 --redir

The supplied disk image performs a full Linux operating system boot.

© 2010 Imperas Software Limited www.OVPworld.org Page 57 of 115
.

MIPS32 Malta Linux Platform

11.2.2 Adding Additional Linux Components
The ftp component is required in the Linux operating system to allow the easy transfer of user
programs into the simulated Linux environment. This additional component may be installed
using apt-get and will require root login in the simulated Linux environment.

Login as root and install the ftp package.

> apt-get install ftp

Now logout as root using the exit command.

> exit

11.2.3 Transfer Files
The simulation was executed using the additional command line argument redir. This caused a
re-direction command of redir="tcp:15901:10.0.2.15:5901,tcp:11001:10.0.2.15:11001" to be
passed to the NIC peripheral device. This will expose a port that allows a connection to an FTP
server.

For this example we have created a version of the linpack application by cross-compiling on a
linux host system.

login as user1 (or whatever user account you set up during the installation) and use ftp to transfer
the compiled program onto the simulated Linux platform from an ftp server. For this example we
are running an ftp server on a host 172.17.1.254

% ftp <server>
% login: <login>
% password: <password>
ftp> passive
ftp> cd <directory of executable>
ftp> binary
ftp> get linpack.exe
ftp> quit

© 2010 Imperas Software Limited www.OVPworld.org Page 58 of 115
.

MIPS32 Malta Linux Platform

This is shown in the following screenshot.

Check the permissions on the transferred file to ensure that it is executable from a user login. If it
cannot be executed you can use the chmod command, for example

chmod +x linpack.exe

11.3 Using TFTP

If no FTP server is available or all the files to be transferred are available on the local Host
machine it is possible to use the simpler TFTP protocol.

The NIC peripheral includes an emulated TFTP server that intercepts all TFTP packets being sent
from the guest operating system. Only the command get is supported to load files from the Host
into the guest operating system. The TFTP requests for files are translated to file operations on
the Host machine. The files must be transferred in binary mode.

© 2010 Imperas Software Limited www.OVPworld.org Page 59 of 115
.

MIPS32 Malta Linux Platform

11.3.1 Starting the Simulation

Run the platform, modifying the script file RUN_BootLinux provided in the
OVPsim_demo_linux_MipsMalta_install installation to pass an additional parameter
‘--tftp <path>’ to enable the emulated TFTP server and set the root directory on the Host
machine, as shown below for Linux

PLATFORM_VLNV \
 --verbose \
 --ramdisk initrd.gz \
 --finishonhalt \
 --kernel vmlinux \
 --console tty0 ^
 --output imperas.log \
 --wallclock \
 --tftp <path>

The supplied disk image performs a full Linux operating system boot.

11.3.2 Adding Additional Linux Components
The tftp component may need to be added to the Linux installation. This component will be
installed using apt-get and will require root login in the simulated Linux environment.

© 2010 Imperas Software Limited www.OVPworld.org Page 60 of 115
.

MIPS32 Malta Linux Platform

Login as root and install the TFTP package using the command

> apt-get install tftp

now logout as root using the exit command.

> exit

11.3.3 Transfer Files into Guest Operating System
The simulation was executed with the additional command line argument tftp <tftpPrefix>. This
enabled the emulation of the TFTP server within the NIC peripheral. The root from which files
are transferred is defined by the path addition to the tftp argument. The argument to the get
command must be an absolute path, though it is converted to a path relative to the tftpPrefix
argument to the model. For example, if we have a file C:\workspace\userApp\myFile.exe; we
can specify the command line argument as tftp C:\workspace and access the file in tftp using the
command get /userApp/myFile.exe.

For the following example we have created a version of the linpack application by cross-
compiling on a linux host system using the MIPS Linux cross compiler. This is contained in a
directory userApp that resides within the directory to which we have set the root using the tftp
argument.

login as user1 (or whatever user account you set up during the installation) and use tftp to transfer
the compiled program onto the simulated Linux platform.

% tftp <host>
tftp> binary
tftp> get /userApp/linpack.exe
tftp> quit

⇒ <host> should be set to any IP address that is NOT the local host ip address.

© 2010 Imperas Software Limited www.OVPworld.org Page 61 of 115
.

MIPS32 Malta Linux Platform

This is shown in the following screenshot.

Check the permissions on the transferred file to ensure that it is executable from a user login. If it
cannot be executed you can use the chmod command, for example

chmod +x linpack.exe

© 2010 Imperas Software Limited www.OVPworld.org Page 62 of 115
.

MIPS32 Malta Linux Platform

12 Debugging Linux User Applications

12.1 Introduction
Once the Linux kernel is up and running it is the user applications themselves that need to be
debugged.

In the OVPsim environment it is simple to connect a debugger, such as command line GDB or a
GUI like DDD or Eclipse, to a user application running on the simulated Linux operating system.
This is accomplished using one or more instances of gdbserver running in the simulated Linux
environment.

This section describes additional components that may be required in the simulated Linux
environment and the steps required to accomplish user application debugging.

12.2 Linux Installation
There must be a standard Linux installation available on a disk image. Section 7describes how to
build a full Linux installation disk.

12.3 Booting Linux

Run the platform from the command line or by executing a modified version of the batch file
bootLinux.bat provided.

This will execute the platform provided, passing in the Linux kernel as the first parameter.

Additional arguments may be used to enable file transfer by FTP or TFTP.

12.3.1 Redirecting TCP Port
Add the ‘--redir’ argument to set redirection of the tcp port 11001. This will enable both the
connection between the gdb server and a gdb instance later and transferring files, see section 11.2
Using an FTP Server for more details.

PLATFORM_VLNV \
 --verbose \
 --ramdisk initrd.gz \
 --finishonhalt \
 --kernel vmlinux \
 --console tty0 ^
 --output imperas.log \
 --wallclock \
 --redir

© 2010 Imperas Software Limited www.OVPworld.org Page 63 of 115
.

MIPS32 Malta Linux Platform

12.3.2 Enabling TFTP File Transfer
Add the TFTP <path> argument to enable TFTP with the root server directory, on the host, set to
<path>. See section 11.3 Using TFTP for more details

PLATFORM_VLNV ^
 --verbose ^
 --ramdisk initrd.gz ^
 --finishonhalt ^
 --kernel vmlinux ^
 --console tty0 ^
 --output imperas.log ^
 --wallclock ^
 --tftp “C:\workspace”

12.4 Compiling a User Program
12.4.1 Cross Compiler ToolChain
The toolchain used to compile the user application is the MIPS GNU/Linux toolchain available
from the CodeSourcery website at

http://www.codesourcery.com/sgpp/lite/mips/portal/subscription?@template=lite

There are installers for Linux and Windows (MINGW) host platforms.

The version of installer used by Imperas for the generation of this example was 4.2-129

12.4.2 Cross Compiler Make Environment
The toolchain is extracted into a directory mips-4.2, we add this onto our path

export PATH=${PATH}:/path/to/installation/mips-4.2/bin

We can then use a Makefile to build our user application. The following Makefile uses the cross
compiler to generate an exe file from a source c file, led_flash.c. It also generates the symbol
table and an assembler listing (objdump) for use in debug.

CFLAGS = -EL -msoft-float -static -g
LDFLAGS= -lm
CC = mips-linux-gnu-gcc $(CFLAGS)
NM = mips-linux-gnu-nm -n
OD = mips-linux-gnu-objdump -D

ALL = led_flash.exe

all: $(ALL)

%.exe: %.c
 $(CC) -o $@ $(<) $(LDFLAGS)
 $(NM) $@ > $(@).nm
 $(OD) $@ > $(@).od

© 2010 Imperas Software Limited www.OVPworld.org Page 64 of 115
.

http://www.codesourcery.com/sgpp/lite/mips/portal/subscription?@template=lite

MIPS32 Malta Linux Platform

clean:
 rm -f $(ALL)
 rm -f $(ALL).nm
 rm -f $(ALL).od

12.4.3 Building the Application
We can now simply build the application into an executable ready to be loaded onto the
MipsMalta platform and executed by typing make at the command line.

The following is an example of the output generated when the application is built.

This application can now be transferred into the MIPS Malta Linux simulation and executed. See
the following section that takes you through this process.

12.5 Adding Additional Linux Components
The gdb component is required in the Linux operating system to enable debugging of the user
application. This includes gdb server to allow the connection of a debugger running on the native
host. This component will be installed using apt-get and will require root login in the simulated
Linux environment.

© 2010 Imperas Software Limited www.OVPworld.org Page 65 of 115
.

MIPS32 Malta Linux Platform

Login as root

Install the gdb package

now logout as root using the exit command.

12.6 Remote Debug using GDBserver
12.6.1 Starting GDB Server
Run the program, under gdbserver, using the port on the localhost that has been mapped onto the
host machine port of the same number.

% gdbserver localhost:11001 ./linpack.exe

© 2010 Imperas Software Limited www.OVPworld.org Page 66 of 115
.

MIPS32 Malta Linux Platform

12.6.2 Connecting to GDB Server
12.6.2.1 Using Eclipse
TBA

12.6.2.2 Using DDD from a Linux Host
In this example we are using a version of mips gdb, built for a Linux host, to connect to the
gdbserver running in the OVPsim simulated Linux environment, on a Windows based PC.

On any Linux machine start a debug session using command line gdb or gui ddd (must specify
the specific gdb version to use so that it is compatible with the gdb server installation in the
simulated Linux environment).

% ddd --debugger gdb6.4/install/bin/mipsel-linux-gnu-gdb

This will start the DDD GUI.

In the command prompt the file to be debugged should be loaded using the command

© 2010 Imperas Software Limited www.OVPworld.org Page 67 of 115
.

MIPS32 Malta Linux Platform

(gdb) file linpack.exe

We should now be able to connect to the port on the Windows host on which the simulation is
running

(gdb) target remote win23:11001

12.6.2.3 Using GDB from local Windows Host
In this example we are using a version of mips gdb, built for a Windows host, to connect to the
gdbserver running in the OVPsim simulated Linux environment, on a Windows based PC.

On the local Windows machine start a debug session using command line gdb.

% ./mipsel-linux-gnu-gdb

This will start the GDB command line debugger.

© 2010 Imperas Software Limited www.OVPworld.org Page 68 of 115
.

MIPS32 Malta Linux Platform

In the command prompt the file to be debugged should be loaded using the command

(gdb) file linpack.exe

We should now be able to connect to the port on the Windows host on which the simulation is
running

(gdb) target remote localhost:11001

© 2010 Imperas Software Limited www.OVPworld.org Page 69 of 115
.

MIPS32 Malta Linux Platform

We can now carry out normal debugging operations, such as creating and running to breakpoints.

12.6.3 Debugging Multiple Applications in Parallel

Each application instance to be debugged will require:

1. a port to be exported from the simulation,
2. a gdb server instance in the simulated Linux environment
3. a ddd/gdb debugging instance on a Host machine

In order to export additional ports the platform.c file will need to be modified to change the
attribute passed to the Ethernet NIC peripheral. This is passed using the icm function in the
platform, as shown below

icmAddStringAttr(nicAttrs, "redir", "tcp:11001:10.0.2.15:11001");

 icmPseP nic = icmNewPSE("PCI_NET", nicPse, nicAttrs,
 nicIntercept, "modelAttrs");

To add additional ports the string is constructed as provided in the following example that
exports two ports.

 icmAddStringAttr(nicAttrs, "redir","tcp:11001:10.0.2.15:11001,
tcp:11002:10.0.2.15:11002");

© 2010 Imperas Software Limited www.OVPworld.org Page 70 of 115
.

MIPS32 Malta Linux Platform

12.7 Debug using Simulated GDB
Debugging can also be carried out using a GDB session running within the simulated Guest
Linux.

In this case the source code should also be transferred onto the simulated platform using the FTP
or TFTP methods described earlier. Start GDB using the command

> gdb linpack.exe

We are now ready to start debugging the application. We shall set a breakpoint on main and run
the application.

We can use all the expected GDB commands, for example add breakpoints, single step, examine
registers etc

© 2010 Imperas Software Limited www.OVPworld.org Page 71 of 115
.

MIPS32 Malta Linux Platform

© 2010 Imperas Software Limited www.OVPworld.org Page 72 of 115
.

MIPS32 Malta Linux Platform

13 Creating an Example Linux Kernel Module

13.1 Introduction
This section provides some information to help with the creation of new kernel driver modules
and how these can be developed on the simulated platform.

The example in this section is a character device driver for the 8 character LED that is defined as
part of the Malta FPGA device.

13.2 Pre-Requisites
There are pre-requisites to being able to build a driver kernel module, namely

• source of the linux kernel
• cross compiler for building the linux kernel

These were previously discussed in the section 9.2.1 “Building the Cross-Compiler” and section
9.2.2 “Building the Linux Kernel”. Please see these sections for instructions if they have not
already been performed.

13.3 Starting the Platform Simulation

The MipsMalta platform should be started with additional command line arguments, as used
previously, to export a TCP port (redir) and tftp root (tftp) to allow easy transfer of files into the
Guest Operating System and run in real time (wallclock).

Using one of the example script files it should be modified as shown below (for Windows)

%PLATFORM_VLNV% ^
 --verbose ^
 --ramdisk initrd.gz ^
 --finishonhalt ^
 --kernel vmlinux ^
 --console tty0 ^
 --output imperas.log ^
 --wallclock ^
 --redir ^
 --tftp “C:\workspace\kernelModule”

© 2010 Imperas Software Limited www.OVPworld.org Page 73 of 115
.

MIPS32 Malta Linux Platform

13.4 Example Source
This section contains example code for a simple device driver. The device driver allows the LED
register in the Malta FPGA to be accessed for reading and writing.

13.4.1 Included Header Files
The header files that are used in the Kernel device driver

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h> /* character device definitions */

This next header file is used to define the register in the MIPS Malta FPGA that is used to access
the LEDs.

#include "mipsMalta.h"

13.4.2 Callback Table and Functions
13.4.2.1 Table
A table provides the list of functions provided by this device driver.
struct file_operations ops =
{
 .owner = THIS_MODULE,
 .open = led_open,
 .release = led_release,
 .read = led_read,
 .write = led_write
};

13.4.2.2 Device Open
/*
 * called whenever a process attempts to open the device
 */
static int led_open (struct inode *inode, struct file *file)
{
 printk ("led_open: %d.%d\n", MAJOR(inode->i_rdev), MINOR(inode->i_rdev));
 return 0 ;
}

13.4.2.3 Device Close
/*
 * Called when a process closes the device.
 */
static int led_release (struct inode *inode, struct file *file)
{
 printk ("led_release\n");
 return 0;
}

© 2010 Imperas Software Limited www.OVPworld.org Page 74 of 115
.

MIPS32 Malta Linux Platform

13.4.2.4 Device Read
/*
 * read entry point:
 */
static ssize_t led_read (struct file *file,
 char *buffer, /* The buffer to fill with data */
 size_t length, /* The length of the buffer */
 loff_t * offset) /* Our offset in the file */
{
 unsigned char c;

 /* Read from physical LED register */
 c = *(char *)LED_REG;

 printk ("led_read: %x\n", (unsigned int)c);

 if (put_user (c, buffer) != 0)
 return -EFAULT;

 return 1; /* read() always returns exactly one byte */
}

13.4.2.5 Device Write
/*
 * write entry point:
 */
static ssize_t led_write (struct file *file,
 const char *buffer, /* buffer */
 size_t length, /* length of buffer */
 loff_t * offset) /* offset in the file */
{
 unsigned char c;

 if (get_user (c, buffer) != 0)
 return -EFAULT;

 printk ("led_write: %x\n", (unsigned int)c);

 /* Write to physical LED register */
 *(char *)LED_REG = c;

 return 1;
}

13.4.3 Device Module Initialize and Exit
13.4.3.1 Device Initialization
This is the function invoked when the kernel module is installed.
/*
 * Initialize the driver - Register the character device
 */
static int led_init (void)
{
 int ret;

 printk ("LED driver: hello\n") ;
 ret = register_chrdev (LED_MAJOR, DEVICE_NAME, &ops);
 if (ret != 0)
 return ret;
 return 0;
}

© 2010 Imperas Software Limited www.OVPworld.org Page 75 of 115
.

MIPS32 Malta Linux Platform

13.4.3.2 Device Exit
This is the function invoked when the kernel module is removed.
void led_exit (void)
{
 printk ("LED driver: goodbye\n");
 unregister_chrdev (LED_MAJOR, DEVICE_NAME);
}

13.4.3.3 Register Module

Define module functions used for initialization and exiting

module_init (led_init);
module_exit (led_exit);

13.5 Building the Device Driver
13.5.1 Makefiles
For convenience we are using two Makefiles. The first Makefile sits in the directory containing
the driver source code and sets the object module to the driver name object.

obj-m := led_drv.o

The second is common to all kernel modules and specifies the module to be compiled, using
M=’mymoduledirectory’

COMPILER=/path/to/compiler/install
CROSS_COMPILE_V=${COMPILER}/bin/mipsel-malta-linux-
KERNELSRC=/path/to/source/linux-2.6.23.11
MYMODULE=$(shell pwd)/ledDrvModule

default:
 make CROSS_COMPILE=$(CROSS_COMPILE_V) -C $(KERNELSRC) M=$(MYMODULE) modules

Of course these can be combined into a single Makefile that would reside in the directory with
the source files

COMPILER=/path/to/compiler/install
CROSS_COMPILE_V=${COMPILER}/bin/mipsel-malta-linux-
KERNELSRC=/path/to/source/linux-2.6.23.11

obj-m += led_drv.o

default:
 make CROSS_COMPILE=$(CROSS_COMPILE_V) -C $(KERNELSRC) modules SUBDIRS=$(PWD)

© 2010 Imperas Software Limited www.OVPworld.org Page 76 of 115
.

MIPS32 Malta Linux Platform

13.5.2 Building
The tools available allow the driver to be built on a Linux host machine, in the same way that the
Linux kernel is re-built only on a Linux host.

Building the example kernel module using the Makefile, shown above, will provide output
similar to that below:

13.6 Installing the Kernel Module
The file created is a .ko file and this should be transferred into the MIPS Malta Linux platform in
the same way as a user application is transferred, as described in section 11 “Transferring Files to
Guest Linux”.

The kernel module can only be installed from the root account.

First we use mknod to make a directory entry and corresponding i-node for a special file.

mknod /dev/led c 42 0

We provide the name of the device as /dev/led, c defines the device as a character device, the
major device number 42 that helps the operating system find the device driver code and the minor
device number 0 used to select the line number. The Major number 42 is reserved for examples
and demos.

⇒ the Major number used when the entry is created corresponds to the value used in the
driver source code during the initialization, as the argument to the function
register_chrdev(), see 13.4.3.1 “Device Initialization”

There will now be an entry in /dev called led.

We must make this file writable for all accounts

chmod 666 /dev/led

© 2010 Imperas Software Limited www.OVPworld.org Page 77 of 115
.

MIPS32 Malta Linux Platform

We now use insmod to install our device driver

insmod led_drv.ko

When installed the driver initialization function is executed.

The following screenshot shows the installation of the led_driver on the MIPS Malta Linux
platform simulation.

13.7 Kernel Module Test Application
A simple test application is created to test the operation of the driver. This will open the file that
was created with mknod to gain access to the device.

 const char *deviceName = "/dev/led";

 if ((fh = open (deviceName, O_WRONLY)) < 0) {
 char error[64] ={"open "};
 strncat(error, deviceName, strlen(deviceName));
 perror (error);
 return 0;
 }

It will then write characters to the device. This is a sequence comprising a walking ‘1’
interspersed with a write of zero. usleep is used to create a delay between each write.

 int repeat=25;
 while (repeat--)
 {
 c = 0;
 write (fh, &c, 1);
 usleep (500000);
 c = 1 << (repeat %8);
 write (fh, &c, 1);
 usleep (500000);
 }

When complete the device is closed

© 2010 Imperas Software Limited www.OVPworld.org Page 78 of 115
.

MIPS32 Malta Linux Platform

 close (fh);

This is built using the same Makefile and Cross Compiler toolchain as described in section
12.4 “Compiling a User Program”.

The .exe file created should be transferred into the MIPS Malta Linux platform in the same way
as a user application is transferred, as described in section 11 “Transferring Files to Guest
Linux”.

We can now test our application and driver in conjunction with the peripheral device.

When running the application, it first opens the device and then writes characters. The device
driver has been written including with debug printf statements which are seen in the console.

When complete the device is closed.

© 2010 Imperas Software Limited www.OVPworld.org Page 79 of 115
.

MIPS32 Malta Linux Platform

14 Debugging a Statically Linked Linux Kernel Module

As the kernel module is statically linked into the kernel all symbolic information for the kernel
module will be available.

This allows the module to be debugged in the same way as a kernel can be debugged, see
section 10 ”Debugging the Linux Kernel”

© 2010 Imperas Software Limited www.OVPworld.org Page 80 of 115
.

MIPS32 Malta Linux Platform

15 Debugging a Dynamically loaded Linux Kernel Module

It is difficult to debug a Linux Kernel Module (LKM) especially when it is dynamically loaded
from a compiled relocatable object because it resides in virtual memory. This means there are no
symbols and no information about where the module resides in memory.

However, the Imperas Multiprocessor Debugger provides functionality to allow source level
debug of LKMs without any changes to the original Linux kernel.

15.1 Pre-Requisites

You will need to have obtained and installed a version of the Imperas tools and the demo
installers.

These can be made available from the user area on www.imperas.com by contacting Imperas at
info@imperas.com.

Two demonstrations are provided by Imperas, for registered Imperas users, to show both the
capabilities to debug a Linux kernel, including a dynamically loaded kernel module (LKM) and
the use of the Imperas Verification, Analysis and Profiling (VAP) tools; these are
Imperas_idebug_linux_MipsMalta and Imperas_ivap_linux_MipsMalta respectively.

These demo installers include a version of the MIPS Malta Linux Kernel with symbolic
information.

15.2 Starting the Platform Simulation
The Imperas simulator is invoked using Imperas.exe. the platform may be loaded from the VLNV
library or by loading the platform shared object or Dynamic Link Library.

⇒ In the following please update the path to the working directory if using the TFTP method
for transferring files into the guest operating system.

15.2.1 Invoking with VLNV Library
Within the VLNV library is a description of the standard MipsMalta platform. This can be
selected by the Imperas front end and overrides applied to make configure changes to the
platform.

The invocation of Imperas with the MipsMalta platform is shown below

imperas.exe --verbose ^
 --vlnvname MipsMalta --vlnvvendor "mips.ovpworld.org" ^
 --objfile vmlinux --reset 0xbfc00000 ^
 --output imperas.log ^
 --approxtimer --wallclockFactor 3 ^
 --override MipsMalta/Core_Board_SDRAM_promInit/initrd=initrd.gz ^

© 2010 Imperas Software Limited www.OVPworld.org Page 81 of 115
.

http://www.imperas.com/
mailto:info@imperas.com

MIPS32 Malta Linux Platform

 --override MipsMalta/mipsle1/variant=24KEc ^
 ^
 --enabletools ^
 --extlib MipsMalta/mipsle1=linuxOsHelper ^
 ^
 --idebug ^

This basic invocation is provided in the Imperas_idebug_linux_MipsMalta demo directory in the
script DEBUG_lkm_linux_mipsmalta. This will run scripts to guide you through the LKM
debug, if you wish to manually enter the commands remove the line

to remove the replay of commands in the simulated linux
--override MipsMalta/Ps2Control/replay=Ps2ControlInput.rec

to remove the debug commands
--batch lkm_debug_linux_mipsmalta.tcl

The following additions / changes are made in order to provide the same features that were
enabled previously

Change the boot method to boot from disk image

--override MipsMalta/Core_Board_SDRAM_promInit/initrd=initrd.gz ^

becomes
--override MipsMalta/Core_Board_SDRAM_promInit/root="/dev/hda1" ^

And add drive, redirection and directory information

--override MipsMalta/PIIX4-IDE/Drive0Name="mipsel_hda" ^
--override
MipsMalta/PCI_NET/redir="tcp:15901:10.0.2.15:15901,tcp:11001:10.0.2.15:11001" ^
--override MipsMalta/PCI_NET/tftpPrefix="<path\to\driver\working\directory>"

15.2.2 Invoking from ICM Platform
The same ICM C platform can be loaded into Imperas as a shared object (Linux) or Dynamic
Link Library (Windows). When the platform source file is built to an executable using the
standard build system it also produces the shared object.

The shared object is loaded by the argument --icmobject and the arguments are passed by the
argument --icmargv.

This is loaded into the Imperas executable and the same arguments are passed

imperas.exe --verbose ^
 --icmobject OVPsim_linux_MipsMalta.dll ^
 --icmargv vmlinux --icmargv finishonhalt --icmargv wallclock ^
 --icmargv tftp --icmargv “C:\workspace”
 --output imperas.log ^
 --approxtimer --wallclockFactor 3 ^
 ^
 --extlib MipsMalta/mipsle1=mips32CpuHelper ^
 --extlib MipsMalta/mipsle1=vapHelper ^

© 2010 Imperas Software Limited www.OVPworld.org Page 82 of 115
.

MIPS32 Malta Linux Platform

 --extlib MipsMalta/mipsle1=vapTools ^
 --extlib MipsMalta/mipsle1=linuxOsHelper ^
 ^
 --idebug ^

⇒ Note that when loading an ICM object the Imperas simulator cannot initially determine

the components it contains. This means that the --enabletools cannot be used to load all
required tool libraries and they must be loaded individually on the command line.

15.2.3 Debug Startup
The debugger will load the platform and then wait at the debug prompt for input

At the initial prompt type continue (or c) to start the simulation. After the Linux operating system
has booted we return control to the debugger by interrupting with control-C.

15.3 Registering Kernel Module with Debugger
The development provides a command, debugKernelModule, which allows the name of a kernel
module that will be loaded sometime in the future to be registered with the debugger. When the
kernel module is loaded, using the insmod command, a breakpoint will be set at the start of the
function defined with module_init.

The kernel module is loaded at an arbitrary kernel address and fixed up for execution by the
kernel during the loading process. This requires that the kernel is built to be relocatable and as
such there is no symbol table available for the loaded kernel module.

When the debugger hits the breakpoint created on the code executed by the insmod command, the
debugger introspects the kernel to discover the module load address and creates a symbol table.

© 2010 Imperas Software Limited www.OVPworld.org Page 83 of 115
.

MIPS32 Malta Linux Platform

⇒ The .ko and .c file of the kernel module must be available in the directory from which the
simulation was started

This allows symbolic debug of the loaded kernel module; for example adding breakpoints onto
the other functions within the kernel driver module by name.

15.4 Debugging the Kernel Module
This section assumes we are using the same kernel module that was previously explained in
section 13 "Creating an Example Linux Kernel Module”

15.4.1 Register Kernel Module for Debugging
We need to register the kernel modules we are interested in debugging with the debugger. This is
done using the debugKernelModule command. The command has been added into the tcl
command space of the debugger under the debugger namespace and so is accessed through the tcl
command window. This can be done from the debug window by prefixing the command with the
keyword ‘tcl’ or the tcl global namespace prefix ‘::’.

tcl lkmbreakonload -module led_drv

or

::lkmbreakonload -module led_drv

⇒ The command has two arguments: the module name and the file containing the module. If

the file argument is omitted it is assumed the file is called <module name>.ko.

15.4.2 Installing the Kernel Module
Here we will look at what happens now when we install the led_drv kernel module example in
the guest linux operating simulation.

Use the same commands as previously used to install the kernel module when logged in as root in
the guest operating system.

mknod /dev/led c 42 0
chmod 666 /dev/led
insmod led_drv.ko

This time the insmod command does not return to the prompt. This is because the debugger has
detected the loading of the kernel module led_drv that was previously registered for debugging
and stopped the simulation. You will notice also that the symbol table is generated.

© 2010 Imperas Software Limited www.OVPworld.org Page 84 of 115
.

MIPS32 Malta Linux Platform

We have stopped at the start of the init function. We are now able to debug the init function and
also add breakpoints to other functions of interest, watchpoints on variables etc

15.4.3 Adding Breakpoints
The example application that uses the led_drv driver module writes values to the LED. We can
apply a breakpoint on the led_write function in the driver to debug this

We can use all the standard debug features to debug the kernel module, for example breakpoints,
watchpoints, single stepping, examining registers etc.

15.4.4 Source Level Debug
We are able to debug the kernel driver at source level.

When we continue the simulation with the breakpoint set on led_write, we hit a breakpoint as
soon as the led_flash.exe test application is executed.

© 2010 Imperas Software Limited www.OVPworld.org Page 85 of 115
.

MIPS32 Malta Linux Platform

16 Restrictions and Caveats

The platform is tested only under the following conditions:

• Little endian memory organization
• Debian distribution of Linux kernel version 2.6.23.11

© 2010 Imperas Software Limited www.OVPworld.org Page 86 of 115
.

APPENDIX A

A.1 Platform Command Line Arguments

Argument Parameter Description
P integer expose a port on which a debugger can be attached
T integer start tracing after integer number of instructions have be

performed by the MIPS processor
initrd none boot using the initial ramdisk
finishonhalt none cause the simulation to be stopped when a soft reset is requested

during the halt operation
wallclock none Simulate using wall clock time i.e. simulation will not run faster

than real time
redir none redirection of tcp ports to allow tcp connection with another

machine for file transfers etc redirection string is
tcp:15901:10.0.2.15:5901,tcp:11001:10.0.2.15:11001

tftp String Enable the emulated TFTP server and specify the root directory
in the host machine

stopafter double stop execution after an integer number of instructions has been
performed on the MIPS processor.

nographics none do not use SDL for the output graphics
variant string define the MIPS32 processor variant to be modeled, for

example 4KEc, 24K etc
bootimage none define the boot loader file to be loaded and used.

© 2010 Imperas Software Limited www.OVPworld.org Page 87 of 115

MIPS32 Malta Linux Platform

APPENDIX B

B.1 Some Terms Explained

Term Description
Guest Operating System Is the operating system that is running within the simulation
Host Operating System Is the OS of the Host machine being used
LKM Linux Kernel Module
Kernel Module A kernel extension ‘driver’ that executes as part of the kernel, often

dynamically loaded

© 2010 Imperas Software Limited www.OVPworld.org Page 88 of 115
.

MIPS32 Malta Linux Platform

APPENDIX C

C.1 MIPS Kernel Configuration File

Automatically generated make config: don't edit
Linux kernel version: 2.6.23.11
Thu Feb 14 13:59:24 2008

CONFIG_MIPS=y

Machine selection

CONFIG_ZONE_DMA=y
CONFIG_MACH_ALCHEMY is not set
CONFIG_BASLER_EXCITE is not set
CONFIG_MIPS_COBALT is not set
CONFIG_MACH_DECSTATION is not set
CONFIG_MACH_JAZZ is not set
CONFIG_LEMOTE_FULONG is not set
CONFIG_MIPS_ATLAS is not set
CONFIG_MIPS_MALTA=y
CONFIG_MIPS_SEAD is not set
CONFIG_MIPS_SIM is not set
CONFIG_MARKEINS is not set
CONFIG_MACH_VR41XX is not set
CONFIG_PNX8550_JBS is not set
CONFIG_PNX8550_STB810 is not set
CONFIG_PMC_MSP is not set
CONFIG_PMC_YOSEMITE is not set
CONFIG_QEMU is not set
CONFIG_SGI_IP22 is not set
CONFIG_SGI_IP27 is not set
CONFIG_SGI_IP32 is not set
CONFIG_SIBYTE_CRHINE is not set
CONFIG_SIBYTE_CARMEL is not set
CONFIG_SIBYTE_CRHONE is not set
CONFIG_SIBYTE_RHONE is not set
CONFIG_SIBYTE_SWARM is not set
CONFIG_SIBYTE_LITTLESUR is not set
CONFIG_SIBYTE_SENTOSA is not set
CONFIG_SIBYTE_PTSWARM is not set
CONFIG_SIBYTE_BIGSUR is not set
CONFIG_SNI_RM is not set
CONFIG_TOSHIBA_JMR3927 is not set
CONFIG_TOSHIBA_RBTX4927 is not set
CONFIG_TOSHIBA_RBTX4938 is not set
CONFIG_WR_PPMC is not set
CONFIG_RWSEM_GENERIC_SPINLOCK=y
CONFIG_ARCH_HAS_ILOG2_U32 is not set
CONFIG_ARCH_HAS_ILOG2_U64 is not set
CONFIG_GENERIC_FIND_NEXT_BIT=y
CONFIG_GENERIC_HWEIGHT=y

© 2010 Imperas Software Limited www.OVPworld.org Page 89 of 115
.

MIPS32 Malta Linux Platform

CONFIG_GENERIC_CALIBRATE_DELAY=y
CONFIG_GENERIC_TIME=y
CONFIG_SCHED_NO_NO_OMIT_FRAME_POINTER=y
CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ is not set
CONFIG_ARCH_MAY_HAVE_PC_FDC=y
CONFIG_DMA_NONCOHERENT=y
CONFIG_DMA_NEED_PCI_MAP_STATE=y
CONFIG_EARLY_PRINTK=y
CONFIG_SYS_HAS_EARLY_PRINTK=y
CONFIG_HOTPLUG_CPU is not set
CONFIG_I8259=y
CONFIG_MIPS_BONITO64=y
CONFIG_MIPS_MSC=y
CONFIG_NO_IOPORT is not set
CONFIG_GENERIC_ISA_DMA=y
CONFIG_CPU_BIG_ENDIAN is not set
CONFIG_CPU_LITTLE_ENDIAN=y
CONFIG_SYS_SUPPORTS_BIG_ENDIAN=y
CONFIG_SYS_SUPPORTS_LITTLE_ENDIAN=y
CONFIG_IRQ_CPU=y
CONFIG_MIPS_BOARDS_GEN=y
CONFIG_PCI_GT64XXX_PCI0=y
CONFIG_SWAP_IO_SPACE=y
CONFIG_BOOT_ELF32=y
CONFIG_MIPS_L1_CACHE_SHIFT=5

CPU selection

CONFIG_CPU_LOONGSON2 is not set
CONFIG_CPU_MIPS32_R1 is not set
CONFIG_CPU_MIPS32_R2=y
CONFIG_CPU_MIPS64_R1 is not set
CONFIG_CPU_MIPS64_R2 is not set
CONFIG_CPU_R3000 is not set
CONFIG_CPU_TX39XX is not set
CONFIG_CPU_VR41XX is not set
CONFIG_CPU_R4300 is not set
CONFIG_CPU_R4X00 is not set
CONFIG_CPU_TX49XX is not set
CONFIG_CPU_R5000 is not set
CONFIG_CPU_R5432 is not set
CONFIG_CPU_R6000 is not set
CONFIG_CPU_NEVADA is not set
CONFIG_CPU_R8000 is not set
CONFIG_CPU_R10000 is not set
CONFIG_CPU_RM7000 is not set
CONFIG_CPU_RM9000 is not set
CONFIG_CPU_SB1 is not set
CONFIG_SYS_HAS_CPU_MIPS32_R1=y
CONFIG_SYS_HAS_CPU_MIPS32_R2=y
CONFIG_SYS_HAS_CPU_MIPS64_R1=y
CONFIG_SYS_HAS_CPU_NEVADA=y
CONFIG_SYS_HAS_CPU_RM7000=y
CONFIG_CPU_MIPS32=y
CONFIG_CPU_MIPSR2=y
CONFIG_SYS_SUPPORTS_32BIT_KERNEL=y

© 2010 Imperas Software Limited www.OVPworld.org Page 90 of 115
.

MIPS32 Malta Linux Platform

CONFIG_SYS_SUPPORTS_64BIT_KERNEL=y
CONFIG_CPU_SUPPORTS_32BIT_KERNEL=y

Kernel type

CONFIG_32BIT=y
CONFIG_64BIT is not set
CONFIG_PAGE_SIZE_4KB=y
CONFIG_PAGE_SIZE_8KB is not set
CONFIG_PAGE_SIZE_16KB is not set
CONFIG_PAGE_SIZE_64KB is not set
CONFIG_BOARD_SCACHE=y
CONFIG_MIPS_CPU_SCACHE=y
CONFIG_CPU_HAS_PREFETCH=y
CONFIG_MIPS_MT_DISABLED is not set
CONFIG_MIPS_MT_SMP=y
CONFIG_MIPS_MT_SMTC is not set
CONFIG_MIPS_MT=y
CONFIG_SYS_SUPPORTS_MULTITHREADING=y
CONFIG_MIPS_MT_FPAFF=y
CONFIG_MIPS_VPE_LOADER is not set
CONFIG_CPU_HAS_LLSC=y
CONFIG_CPU_HAS_SMARTMIPS is not set
CONFIG_CPU_MIPSR2_IRQ_VI=y
CONFIG_CPU_MIPSR2_IRQ_EI=y
CONFIG_CPU_HAS_SYNC=y
CONFIG_GENERIC_HARDIRQS=y
CONFIG_GENERIC_IRQ_PROBE=y
CONFIG_IRQ_PER_CPU=y
CONFIG_CPU_SUPPORTS_HIGHMEM=y
CONFIG_SYS_SUPPORTS_SMARTMIPS=y
CONFIG_ARCH_FLATMEM_ENABLE=y
CONFIG_SELECT_MEMORY_MODEL=y
CONFIG_FLATMEM_MANUAL=y
CONFIG_DISCONTIGMEM_MANUAL is not set
CONFIG_SPARSEMEM_MANUAL is not set
CONFIG_FLATMEM=y
CONFIG_FLAT_NODE_MEM_MAP=y
CONFIG_SPARSEMEM_STATIC is not set
CONFIG_SPLIT_PTLOCK_CPUS=4
CONFIG_RESOURCES_64BIT is not set
CONFIG_ZONE_DMA_FLAG=1
CONFIG_BOUNCE=y
CONFIG_VIRT_TO_BUS=y
CONFIG_SMP=y
CONFIG_SYS_SUPPORTS_SMP=y
CONFIG_NR_CPUS_DEFAULT_2=y
CONFIG_NR_CPUS=2
CONFIG_HZ_48 is not set
CONFIG_HZ_100=y
CONFIG_HZ_128 is not set
CONFIG_HZ_250 is not set
CONFIG_HZ_256 is not set
CONFIG_HZ_1000 is not set
CONFIG_HZ_1024 is not set
CONFIG_SYS_SUPPORTS_ARBIT_HZ=y

© 2010 Imperas Software Limited www.OVPworld.org Page 91 of 115
.

MIPS32 Malta Linux Platform

CONFIG_HZ=100
CONFIG_PREEMPT_NONE=y
CONFIG_PREEMPT_VOLUNTARY is not set
CONFIG_PREEMPT is not set
CONFIG_PREEMPT_BKL=y
CONFIG_KEXEC is not set
CONFIG_SECCOMP=y
CONFIG_LOCKDEP_SUPPORT=y
CONFIG_STACKTRACE_SUPPORT=y
CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config"

General setup

CONFIG_EXPERIMENTAL=y
CONFIG_LOCK_KERNEL=y
CONFIG_INIT_ENV_ARG_LIMIT=32
CONFIG_LOCALVERSION=""
CONFIG_LOCALVERSION_AUTO=y
CONFIG_SWAP=y
CONFIG_SYSVIPC=y
CONFIG_SYSVIPC_SYSCTL=y
CONFIG_POSIX_MQUEUE is not set
CONFIG_BSD_PROCESS_ACCT is not set
CONFIG_TASKSTATS is not set
CONFIG_USER_NS is not set
CONFIG_AUDIT is not set
CONFIG_IKCONFIG is not set
CONFIG_LOG_BUF_SHIFT=15
CONFIG_CPUSETS is not set
CONFIG_SYSFS_DEPRECATED=y
CONFIG_RELAY=y
CONFIG_BLK_DEV_INITRD=y
CONFIG_INITRAMFS_SOURCE=""
CONFIG_CC_OPTIMIZE_FOR_SIZE is not set
CONFIG_SYSCTL=y
CONFIG_EMBEDDED=y
CONFIG_SYSCTL_SYSCALL is not set
CONFIG_KALLSYMS=y
CONFIG_KALLSYMS_EXTRA_PASS is not set
CONFIG_HOTPLUG=y
CONFIG_PRINTK=y
CONFIG_BUG=y
CONFIG_ELF_CORE=y
CONFIG_BASE_FULL=y
CONFIG_FUTEX=y
CONFIG_ANON_INODES=y
CONFIG_EPOLL=y
CONFIG_SIGNALFD=y
CONFIG_EVENTFD=y
CONFIG_SHMEM=y
CONFIG_VM_EVENT_COUNTERS=y
CONFIG_SLAB=y
CONFIG_SLUB is not set
CONFIG_SLOB is not set
CONFIG_RT_MUTEXES=y
CONFIG_TINY_SHMEM is not set

© 2010 Imperas Software Limited www.OVPworld.org Page 92 of 115
.

MIPS32 Malta Linux Platform

CONFIG_BASE_SMALL=0
CONFIG_MODULES=y
CONFIG_MODULE_UNLOAD=y
CONFIG_MODULE_FORCE_UNLOAD is not set
CONFIG_MODVERSIONS=y
CONFIG_MODULE_SRCVERSION_ALL=y
CONFIG_KMOD=y
CONFIG_STOP_MACHINE=y
CONFIG_BLOCK=y
CONFIG_LBD is not set
CONFIG_BLK_DEV_IO_TRACE is not set
CONFIG_LSF is not set
CONFIG_BLK_DEV_BSG is not set

IO Schedulers

CONFIG_IOSCHED_NOOP=y
CONFIG_IOSCHED_AS=y
CONFIG_IOSCHED_DEADLINE=y
CONFIG_IOSCHED_CFQ=y
CONFIG_DEFAULT_AS=y
CONFIG_DEFAULT_DEADLINE is not set
CONFIG_DEFAULT_CFQ is not set
CONFIG_DEFAULT_NOOP is not set
CONFIG_DEFAULT_IOSCHED="anticipatory"

Bus options (PCI, PCMCIA, EISA, ISA, TC)

CONFIG_HW_HAS_PCI=y
CONFIG_PCI=y
CONFIG_ARCH_SUPPORTS_MSI is not set
CONFIG_MMU=y

PCCARD (PCMCIA/CardBus) support

CONFIG_PCCARD is not set
CONFIG_HOTPLUG_PCI is not set

Executable file formats

CONFIG_BINFMT_ELF=y
CONFIG_BINFMT_MISC is not set
CONFIG_TRAD_SIGNALS=y

Power management options

CONFIG_PM is not set

Networking

CONFIG_NET=y

© 2010 Imperas Software Limited www.OVPworld.org Page 93 of 115
.

MIPS32 Malta Linux Platform

Networking options

CONFIG_PACKET=y
CONFIG_PACKET_MMAP=y
CONFIG_UNIX=y
CONFIG_XFRM=y
CONFIG_XFRM_USER=m
CONFIG_XFRM_SUB_POLICY is not set
CONFIG_XFRM_MIGRATE is not set
CONFIG_NET_KEY=y
CONFIG_NET_KEY_MIGRATE is not set
CONFIG_INET=y
CONFIG_IP_MULTICAST=y
CONFIG_IP_ADVANCED_ROUTER=y
CONFIG_ASK_IP_FIB_HASH=y
CONFIG_IP_FIB_TRIE is not set
CONFIG_IP_FIB_HASH=y
CONFIG_IP_MULTIPLE_TABLES=y
CONFIG_IP_ROUTE_MULTIPATH=y
CONFIG_IP_ROUTE_VERBOSE=y
CONFIG_IP_PNP=y
CONFIG_IP_PNP_DHCP=y
CONFIG_IP_PNP_BOOTP=y
CONFIG_IP_PNP_RARP is not set
CONFIG_NET_IPIP=m
CONFIG_NET_IPGRE=m
CONFIG_NET_IPGRE_BROADCAST=y
CONFIG_IP_MROUTE=y
CONFIG_IP_PIMSM_V1=y
CONFIG_IP_PIMSM_V2=y
CONFIG_ARPD is not set
CONFIG_SYN_COOKIES=y
CONFIG_INET_AH=m
CONFIG_INET_ESP=m
CONFIG_INET_IPCOMP=m
CONFIG_INET_XFRM_TUNNEL=m
CONFIG_INET_TUNNEL=m
CONFIG_INET_XFRM_MODE_TRANSPORT=m
CONFIG_INET_XFRM_MODE_TUNNEL=m
CONFIG_INET_XFRM_MODE_BEET=y
CONFIG_INET_DIAG=y
CONFIG_INET_TCP_DIAG=y
CONFIG_TCP_CONG_ADVANCED is not set
CONFIG_TCP_CONG_CUBIC=y
CONFIG_DEFAULT_TCP_CONG="cubic"
CONFIG_TCP_MD5SIG is not set
CONFIG_IP_VS=m
CONFIG_IP_VS_DEBUG is not set
CONFIG_IP_VS_TAB_BITS=12

IPVS transport protocol load balancing support

CONFIG_IP_VS_PROTO_TCP=y
CONFIG_IP_VS_PROTO_UDP=y

© 2010 Imperas Software Limited www.OVPworld.org Page 94 of 115
.

MIPS32 Malta Linux Platform

CONFIG_IP_VS_PROTO_ESP=y
CONFIG_IP_VS_PROTO_AH=y

IPVS scheduler

CONFIG_IP_VS_RR=m
CONFIG_IP_VS_WRR=m
CONFIG_IP_VS_LC=m
CONFIG_IP_VS_WLC=m
CONFIG_IP_VS_LBLC=m
CONFIG_IP_VS_LBLCR=m
CONFIG_IP_VS_DH=m
CONFIG_IP_VS_SH=m
CONFIG_IP_VS_SED=m
CONFIG_IP_VS_NQ=m

IPVS application helper

CONFIG_IP_VS_FTP=m
CONFIG_IPV6=m
CONFIG_IPV6_PRIVACY=y
CONFIG_IPV6_ROUTER_PREF=y
CONFIG_IPV6_ROUTE_INFO=y
CONFIG_IPV6_OPTIMISTIC_DAD is not set
CONFIG_INET6_AH=m
CONFIG_INET6_ESP=m
CONFIG_INET6_IPCOMP=m
CONFIG_IPV6_MIP6 is not set
CONFIG_INET6_XFRM_TUNNEL=m
CONFIG_INET6_TUNNEL=m
CONFIG_INET6_XFRM_MODE_TRANSPORT=m
CONFIG_INET6_XFRM_MODE_TUNNEL=m
CONFIG_INET6_XFRM_MODE_BEET=m
CONFIG_INET6_XFRM_MODE_ROUTEOPTIMIZATION is not set
CONFIG_IPV6_SIT=m
CONFIG_IPV6_TUNNEL=m
CONFIG_IPV6_MULTIPLE_TABLES is not set
CONFIG_NETWORK_SECMARK=y
CONFIG_NETFILTER=y
CONFIG_NETFILTER_DEBUG is not set
CONFIG_BRIDGE_NETFILTER=y

Core Netfilter Configuration

CONFIG_NETFILTER_NETLINK=m
CONFIG_NETFILTER_NETLINK_QUEUE=m
CONFIG_NETFILTER_NETLINK_LOG=m
CONFIG_NF_CONNTRACK_ENABLED is not set
CONFIG_NF_CONNTRACK is not set
CONFIG_NETFILTER_XTABLES=m
CONFIG_NETFILTER_XT_TARGET_CLASSIFY=m
CONFIG_NETFILTER_XT_TARGET_DSCP is not set
CONFIG_NETFILTER_XT_TARGET_MARK=m
CONFIG_NETFILTER_XT_TARGET_NFQUEUE=m

© 2010 Imperas Software Limited www.OVPworld.org Page 95 of 115
.

MIPS32 Malta Linux Platform

CONFIG_NETFILTER_XT_TARGET_NFLOG is not set
CONFIG_NETFILTER_XT_TARGET_TRACE is not set
CONFIG_NETFILTER_XT_TARGET_SECMARK=m
CONFIG_NETFILTER_XT_TARGET_TCPMSS is not set
CONFIG_NETFILTER_XT_MATCH_COMMENT=m
CONFIG_NETFILTER_XT_MATCH_DCCP=m
CONFIG_NETFILTER_XT_MATCH_DSCP is not set
CONFIG_NETFILTER_XT_MATCH_ESP=m
CONFIG_NETFILTER_XT_MATCH_LENGTH=m
CONFIG_NETFILTER_XT_MATCH_LIMIT=m
CONFIG_NETFILTER_XT_MATCH_MAC=m
CONFIG_NETFILTER_XT_MATCH_MARK=m
CONFIG_NETFILTER_XT_MATCH_POLICY=m
CONFIG_NETFILTER_XT_MATCH_MULTIPORT=m
CONFIG_NETFILTER_XT_MATCH_PHYSDEV is not set
CONFIG_NETFILTER_XT_MATCH_PKTTYPE=m
CONFIG_NETFILTER_XT_MATCH_QUOTA=m
CONFIG_NETFILTER_XT_MATCH_REALM=m
CONFIG_NETFILTER_XT_MATCH_SCTP=m
CONFIG_NETFILTER_XT_MATCH_STATISTIC=m
CONFIG_NETFILTER_XT_MATCH_STRING=m
CONFIG_NETFILTER_XT_MATCH_TCPMSS=m
CONFIG_NETFILTER_XT_MATCH_U32 is not set
CONFIG_NETFILTER_XT_MATCH_HASHLIMIT is not set

IP: Netfilter Configuration

CONFIG_IP_NF_QUEUE=m
CONFIG_IP_NF_IPTABLES=m
CONFIG_IP_NF_MATCH_IPRANGE=m
CONFIG_IP_NF_MATCH_TOS=m
CONFIG_IP_NF_MATCH_RECENT=m
CONFIG_IP_NF_MATCH_ECN=m
CONFIG_IP_NF_MATCH_AH=m
CONFIG_IP_NF_MATCH_TTL=m
CONFIG_IP_NF_MATCH_OWNER=m
CONFIG_IP_NF_MATCH_ADDRTYPE=m
CONFIG_IP_NF_FILTER=m
CONFIG_IP_NF_TARGET_REJECT=m
CONFIG_IP_NF_TARGET_LOG=m
CONFIG_IP_NF_TARGET_ULOG=m
CONFIG_IP_NF_MANGLE=m
CONFIG_IP_NF_TARGET_TOS=m
CONFIG_IP_NF_TARGET_ECN=m
CONFIG_IP_NF_TARGET_TTL=m
CONFIG_IP_NF_RAW=m
CONFIG_IP_NF_ARPTABLES=m
CONFIG_IP_NF_ARPFILTER=m
CONFIG_IP_NF_ARP_MANGLE=m

IPv6: Netfilter Configuration (EXPERIMENTAL)

CONFIG_IP6_NF_QUEUE=m
CONFIG_IP6_NF_IPTABLES=m
CONFIG_IP6_NF_MATCH_RT=m

© 2010 Imperas Software Limited www.OVPworld.org Page 96 of 115
.

MIPS32 Malta Linux Platform

CONFIG_IP6_NF_MATCH_OPTS=m
CONFIG_IP6_NF_MATCH_FRAG=m
CONFIG_IP6_NF_MATCH_HL=m
CONFIG_IP6_NF_MATCH_OWNER=m
CONFIG_IP6_NF_MATCH_IPV6HEADER=m
CONFIG_IP6_NF_MATCH_AH=m
CONFIG_IP6_NF_MATCH_MH is not set
CONFIG_IP6_NF_MATCH_EUI64=m
CONFIG_IP6_NF_FILTER=m
CONFIG_IP6_NF_TARGET_LOG=m
CONFIG_IP6_NF_TARGET_REJECT=m
CONFIG_IP6_NF_MANGLE=m
CONFIG_IP6_NF_TARGET_HL=m
CONFIG_IP6_NF_RAW=m

Bridge: Netfilter Configuration

CONFIG_BRIDGE_NF_EBTABLES=m
CONFIG_BRIDGE_EBT_BROUTE=m
CONFIG_BRIDGE_EBT_T_FILTER=m
CONFIG_BRIDGE_EBT_T_NAT=m
CONFIG_BRIDGE_EBT_802_3=m
CONFIG_BRIDGE_EBT_AMONG=m
CONFIG_BRIDGE_EBT_ARP=m
CONFIG_BRIDGE_EBT_IP=m
CONFIG_BRIDGE_EBT_LIMIT=m
CONFIG_BRIDGE_EBT_MARK=m
CONFIG_BRIDGE_EBT_PKTTYPE=m
CONFIG_BRIDGE_EBT_STP=m
CONFIG_BRIDGE_EBT_VLAN=m
CONFIG_BRIDGE_EBT_ARPREPLY=m
CONFIG_BRIDGE_EBT_DNAT=m
CONFIG_BRIDGE_EBT_MARK_T=m
CONFIG_BRIDGE_EBT_REDIRECT=m
CONFIG_BRIDGE_EBT_SNAT=m
CONFIG_BRIDGE_EBT_LOG=m
CONFIG_BRIDGE_EBT_ULOG=m
CONFIG_IP_DCCP is not set
CONFIG_IP_SCTP=m
CONFIG_SCTP_DBG_MSG is not set
CONFIG_SCTP_DBG_OBJCNT is not set
CONFIG_SCTP_HMAC_NONE is not set
CONFIG_SCTP_HMAC_SHA1 is not set
CONFIG_SCTP_HMAC_MD5=y
CONFIG_TIPC is not set
CONFIG_ATM is not set
CONFIG_BRIDGE=y
CONFIG_VLAN_8021Q=y
CONFIG_DECNET is not set
CONFIG_LLC=y
CONFIG_LLC2 is not set
CONFIG_IPX is not set
CONFIG_ATALK=m
CONFIG_DEV_APPLETALK=m
CONFIG_IPDDP=m
CONFIG_IPDDP_ENCAP=y

© 2010 Imperas Software Limited www.OVPworld.org Page 97 of 115
.

MIPS32 Malta Linux Platform

CONFIG_IPDDP_DECAP=y
CONFIG_X25 is not set
CONFIG_LAPB is not set
CONFIG_ECONET is not set
CONFIG_WAN_ROUTER is not set

QoS and/or fair queuing

CONFIG_NET_SCHED=y
CONFIG_NET_SCH_FIFO=y

Queuing/Scheduling

CONFIG_NET_SCH_CBQ=m
CONFIG_NET_SCH_HTB=m
CONFIG_NET_SCH_HFSC=m
CONFIG_NET_SCH_PRIO=m
CONFIG_NET_SCH_RR is not set
CONFIG_NET_SCH_RED=m
CONFIG_NET_SCH_SFQ=m
CONFIG_NET_SCH_TEQL=m
CONFIG_NET_SCH_TBF=m
CONFIG_NET_SCH_GRED=m
CONFIG_NET_SCH_DSMARK=m
CONFIG_NET_SCH_NETEM=m
CONFIG_NET_SCH_INGRESS=m

Classification

CONFIG_NET_CLS=y
CONFIG_NET_CLS_BASIC=m
CONFIG_NET_CLS_TCINDEX=m
CONFIG_NET_CLS_ROUTE4=m
CONFIG_NET_CLS_ROUTE=y
CONFIG_NET_CLS_FW=m
CONFIG_NET_CLS_U32=m
CONFIG_CLS_U32_PERF is not set
CONFIG_CLS_U32_MARK is not set
CONFIG_NET_CLS_RSVP=m
CONFIG_NET_CLS_RSVP6=m
CONFIG_NET_EMATCH is not set
CONFIG_NET_CLS_ACT=y
CONFIG_NET_ACT_POLICE=y
CONFIG_NET_ACT_GACT is not set
CONFIG_NET_ACT_MIRRED is not set
CONFIG_NET_ACT_IPT is not set
CONFIG_NET_ACT_PEDIT is not set
CONFIG_NET_ACT_SIMP is not set
CONFIG_NET_CLS_POLICE=y
CONFIG_NET_CLS_IND=y

Network testing

© 2010 Imperas Software Limited www.OVPworld.org Page 98 of 115
.

MIPS32 Malta Linux Platform

CONFIG_NET_PKTGEN is not set
CONFIG_HAMRADIO is not set
CONFIG_IRDA is not set
CONFIG_BT is not set
CONFIG_AF_RXRPC is not set
CONFIG_FIB_RULES=y

Wireless

CONFIG_CFG80211 is not set
CONFIG_WIRELESS_EXT=y
CONFIG_MAC80211 is not set
CONFIG_IEEE80211=m
CONFIG_IEEE80211_DEBUG is not set
CONFIG_IEEE80211_CRYPT_WEP=m
CONFIG_IEEE80211_CRYPT_CCMP=m
CONFIG_IEEE80211_CRYPT_TKIP is not set
CONFIG_IEEE80211_SOFTMAC=m
CONFIG_IEEE80211_SOFTMAC_DEBUG is not set
CONFIG_RFKILL is not set
CONFIG_NET_9P is not set

Device Drivers

Generic Driver Options

CONFIG_STANDALONE=y
CONFIG_PREVENT_FIRMWARE_BUILD=y
CONFIG_FW_LOADER=y
CONFIG_SYS_HYPERVISOR is not set
CONFIG_CONNECTOR=m
CONFIG_MTD=y
CONFIG_MTD_DEBUG is not set
CONFIG_MTD_CONCAT is not set
CONFIG_MTD_PARTITIONS=y
CONFIG_MTD_REDBOOT_PARTS is not set
CONFIG_MTD_CMDLINE_PARTS is not set

User Modules And Translation Layers

CONFIG_MTD_CHAR=y
CONFIG_MTD_BLKDEVS=y
CONFIG_MTD_BLOCK=y
CONFIG_FTL is not set
CONFIG_NFTL is not set
CONFIG_INFTL is not set
CONFIG_RFD_FTL is not set
CONFIG_SSFDC is not set

RAM/ROM/Flash chip drivers

© 2010 Imperas Software Limited www.OVPworld.org Page 99 of 115
.

MIPS32 Malta Linux Platform

CONFIG_MTD_CFI=y
CONFIG_MTD_JEDECPROBE is not set
CONFIG_MTD_GEN_PROBE=y
CONFIG_MTD_CFI_ADV_OPTIONS is not set
CONFIG_MTD_MAP_BANK_WIDTH_1=y
CONFIG_MTD_MAP_BANK_WIDTH_2=y
CONFIG_MTD_MAP_BANK_WIDTH_4=y
CONFIG_MTD_MAP_BANK_WIDTH_8 is not set
CONFIG_MTD_MAP_BANK_WIDTH_16 is not set
CONFIG_MTD_MAP_BANK_WIDTH_32 is not set
CONFIG_MTD_CFI_I1=y
CONFIG_MTD_CFI_I2=y
CONFIG_MTD_CFI_I4 is not set
CONFIG_MTD_CFI_I8 is not set
CONFIG_MTD_CFI_INTELEXT=y
CONFIG_MTD_CFI_AMDSTD=y
CONFIG_MTD_CFI_STAA=y
CONFIG_MTD_CFI_UTIL=y
CONFIG_MTD_RAM is not set
CONFIG_MTD_ROM is not set
CONFIG_MTD_ABSENT is not set

Mapping drivers for chip access

CONFIG_MTD_COMPLEX_MAPPINGS is not set
CONFIG_MTD_PHYSMAP=y
CONFIG_MTD_PHYSMAP_START=0x0
CONFIG_MTD_PHYSMAP_LEN=0x0
CONFIG_MTD_PHYSMAP_BANKWIDTH=0
CONFIG_MTD_PLATRAM is not set

Self-contained MTD device drivers

CONFIG_MTD_PMC551 is not set
CONFIG_MTD_SLRAM is not set
CONFIG_MTD_PHRAM is not set
CONFIG_MTD_MTDRAM is not set
CONFIG_MTD_BLOCK2MTD is not set

Disk-On-Chip Device Drivers

CONFIG_MTD_DOC2000 is not set
CONFIG_MTD_DOC2001 is not set
CONFIG_MTD_DOC2001PLUS is not set
CONFIG_MTD_NAND is not set
CONFIG_MTD_ONENAND is not set

UBI - Unsorted block images

CONFIG_MTD_UBI is not set
CONFIG_PARPORT is not set
CONFIG_BLK_DEV=y
CONFIG_BLK_DEV_FD=m

© 2010 Imperas Software Limited www.OVPworld.org Page 100 of 115
.

MIPS32 Malta Linux Platform

CONFIG_BLK_CPQ_DA is not set
CONFIG_BLK_CPQ_CISS_DA is not set
CONFIG_BLK_DEV_DAC960 is not set
CONFIG_BLK_DEV_UMEM=m
CONFIG_BLK_DEV_COW_COMMON is not set
CONFIG_BLK_DEV_LOOP=m
CONFIG_BLK_DEV_CRYPTOLOOP=m
CONFIG_BLK_DEV_NBD=m
CONFIG_BLK_DEV_SX8 is not set
CONFIG_BLK_DEV_RAM=y
CONFIG_BLK_DEV_RAM_COUNT=16
CONFIG_BLK_DEV_RAM_SIZE=4096
CONFIG_BLK_DEV_RAM_BLOCKSIZE=1024
CONFIG_CDROM_PKTCDVD=m
CONFIG_CDROM_PKTCDVD_BUFFERS=8
CONFIG_CDROM_PKTCDVD_WCACHE is not set
CONFIG_ATA_OVER_ETH=m
CONFIG_MISC_DEVICES=y
CONFIG_PHANTOM is not set
CONFIG_EEPROM_93CX6 is not set
CONFIG_SGI_IOC4 is not set
CONFIG_TIFM_CORE is not set
CONFIG_IDE=y
CONFIG_IDE_MAX_HWIFS=4
CONFIG_BLK_DEV_IDE=y

Please see Documentation/ide.txt for help/info on IDE drives

CONFIG_BLK_DEV_IDE_SATA is not set
CONFIG_BLK_DEV_IDEDISK=y
CONFIG_IDEDISK_MULTI_MODE is not set
CONFIG_BLK_DEV_IDECD=y
CONFIG_BLK_DEV_IDETAPE is not set
CONFIG_BLK_DEV_IDEFLOPPY is not set
CONFIG_BLK_DEV_IDESCSI is not set
CONFIG_IDE_TASK_IOCTL is not set
CONFIG_IDE_PROC_FS=y

IDE chipset support/bugfixes

CONFIG_IDE_GENERIC=y
CONFIG_BLK_DEV_IDEPCI=y
CONFIG_IDEPCI_SHARE_IRQ is not set
CONFIG_IDEPCI_PCIBUS_ORDER=y
CONFIG_BLK_DEV_OFFBOARD is not set
CONFIG_BLK_DEV_GENERIC=y
CONFIG_BLK_DEV_OPTI621 is not set
CONFIG_BLK_DEV_IDEDMA_PCI=y
CONFIG_BLK_DEV_IDEDMA_FORCED is not set
CONFIG_IDEDMA_ONLYDISK is not set
CONFIG_BLK_DEV_AEC62XX is not set
CONFIG_BLK_DEV_ALI15X3 is not set
CONFIG_BLK_DEV_AMD74XX is not set
CONFIG_BLK_DEV_CMD64X is not set
CONFIG_BLK_DEV_TRIFLEX is not set

© 2010 Imperas Software Limited www.OVPworld.org Page 101 of 115
.

MIPS32 Malta Linux Platform

CONFIG_BLK_DEV_CY82C693 is not set
CONFIG_BLK_DEV_CS5520 is not set
CONFIG_BLK_DEV_CS5530 is not set
CONFIG_BLK_DEV_HPT34X is not set
CONFIG_BLK_DEV_HPT366 is not set
CONFIG_BLK_DEV_JMICRON is not set
CONFIG_BLK_DEV_SC1200 is not set
CONFIG_BLK_DEV_PIIX=y
CONFIG_BLK_DEV_IT8213 is not set
CONFIG_BLK_DEV_IT821X is not set
CONFIG_BLK_DEV_NS87415 is not set
CONFIG_BLK_DEV_PDC202XX_OLD is not set
CONFIG_BLK_DEV_PDC202XX_NEW is not set
CONFIG_BLK_DEV_SVWKS is not set
CONFIG_BLK_DEV_SIIMAGE is not set
CONFIG_BLK_DEV_SLC90E66 is not set
CONFIG_BLK_DEV_TRM290 is not set
CONFIG_BLK_DEV_VIA82CXXX is not set
CONFIG_BLK_DEV_TC86C001 is not set
CONFIG_IDE_ARM is not set
CONFIG_BLK_DEV_IDEDMA=y
CONFIG_IDEDMA_IVB is not set
CONFIG_BLK_DEV_HD is not set

SCSI device support

CONFIG_RAID_ATTRS=m
CONFIG_SCSI=m
CONFIG_SCSI_DMA=y
CONFIG_SCSI_TGT is not set
CONFIG_SCSI_NETLINK=y
CONFIG_SCSI_PROC_FS=y

SCSI support type (disk, tape, CD-ROM)

CONFIG_BLK_DEV_SD=m
CONFIG_CHR_DEV_ST=m
CONFIG_CHR_DEV_OSST=m
CONFIG_BLK_DEV_SR=m
CONFIG_BLK_DEV_SR_VENDOR=y
CONFIG_CHR_DEV_SG=m
CONFIG_CHR_DEV_SCH is not set

Some SCSI devices (e.g. CD jukebox) support multiple LUNs

CONFIG_SCSI_MULTI_LUN=y
CONFIG_SCSI_CONSTANTS=y
CONFIG_SCSI_LOGGING=y
CONFIG_SCSI_SCAN_ASYNC is not set
CONFIG_SCSI_WAIT_SCAN=m

SCSI Transports

© 2010 Imperas Software Limited www.OVPworld.org Page 102 of 115
.

MIPS32 Malta Linux Platform

CONFIG_SCSI_SPI_ATTRS=m
CONFIG_SCSI_FC_ATTRS=m
CONFIG_SCSI_ISCSI_ATTRS=m
CONFIG_SCSI_SAS_LIBSAS is not set
CONFIG_SCSI_LOWLEVEL=y
CONFIG_ISCSI_TCP=m
CONFIG_BLK_DEV_3W_XXXX_RAID=m
CONFIG_SCSI_3W_9XXX=m
CONFIG_SCSI_ACARD=m
CONFIG_SCSI_AACRAID=m
CONFIG_SCSI_AIC7XXX=m
CONFIG_AIC7XXX_CMDS_PER_DEVICE=32
CONFIG_AIC7XXX_RESET_DELAY_MS=15000
CONFIG_AIC7XXX_DEBUG_ENABLE is not set
CONFIG_AIC7XXX_DEBUG_MASK=0
CONFIG_AIC7XXX_REG_PRETTY_PRINT=y
CONFIG_SCSI_AIC7XXX_OLD is not set
CONFIG_SCSI_AIC79XX is not set
CONFIG_SCSI_AIC94XX is not set
CONFIG_SCSI_DPT_I2O is not set
CONFIG_SCSI_ARCMSR is not set
CONFIG_MEGARAID_NEWGEN is not set
CONFIG_MEGARAID_LEGACY is not set
CONFIG_MEGARAID_SAS is not set
CONFIG_SCSI_HPTIOP is not set
CONFIG_SCSI_DMX3191D is not set
CONFIG_SCSI_FUTURE_DOMAIN is not set
CONFIG_SCSI_IPS is not set
CONFIG_SCSI_INITIO is not set
CONFIG_SCSI_INIA100 is not set
CONFIG_SCSI_STEX is not set
CONFIG_SCSI_SYM53C8XX_2 is not set
CONFIG_SCSI_QLOGIC_1280 is not set
CONFIG_SCSI_QLA_FC is not set
CONFIG_SCSI_QLA_ISCSI is not set
CONFIG_SCSI_LPFC is not set
CONFIG_SCSI_DC395x is not set
CONFIG_SCSI_DC390T is not set
CONFIG_SCSI_NSP32 is not set
CONFIG_SCSI_DEBUG is not set
CONFIG_SCSI_SRP is not set
CONFIG_ATA is not set
CONFIG_MD=y
CONFIG_BLK_DEV_MD=m
CONFIG_MD_LINEAR=m
CONFIG_MD_RAID0=m
CONFIG_MD_RAID1=m
CONFIG_MD_RAID10=m
CONFIG_MD_RAID456=m
CONFIG_MD_RAID5_RESHAPE=y
CONFIG_MD_MULTIPATH=m
CONFIG_MD_FAULTY=m
CONFIG_BLK_DEV_DM=m
CONFIG_DM_DEBUG is not set
CONFIG_DM_CRYPT=m
CONFIG_DM_SNAPSHOT=m
CONFIG_DM_MIRROR=m

© 2010 Imperas Software Limited www.OVPworld.org Page 103 of 115
.

MIPS32 Malta Linux Platform

CONFIG_DM_ZERO=m
CONFIG_DM_MULTIPATH=m
CONFIG_DM_MULTIPATH_EMC=m
CONFIG_DM_MULTIPATH_RDAC is not set
CONFIG_DM_DELAY is not set

Fusion MPT device support

CONFIG_FUSION is not set
CONFIG_FUSION_SPI is not set
CONFIG_FUSION_FC is not set
CONFIG_FUSION_SAS is not set

IEEE 1394 (FireWire) support

CONFIG_FIREWIRE is not set
CONFIG_IEEE1394 is not set
CONFIG_I2O is not set
CONFIG_NETDEVICES=y
CONFIG_NETDEVICES_MULTIQUEUE is not set
CONFIG_IFB is not set
CONFIG_DUMMY=m
CONFIG_BONDING=m
CONFIG_MACVLAN is not set
CONFIG_EQUALIZER=m
CONFIG_TUN=m
CONFIG_ARCNET is not set
CONFIG_PHYLIB=m

MII PHY device drivers

CONFIG_MARVELL_PHY=m
CONFIG_DAVICOM_PHY=m
CONFIG_QSEMI_PHY=m
CONFIG_LXT_PHY=m
CONFIG_CICADA_PHY=m
CONFIG_VITESSE_PHY=m
CONFIG_SMSC_PHY=m
CONFIG_BROADCOM_PHY is not set
CONFIG_ICPLUS_PHY is not set
CONFIG_FIXED_PHY is not set
CONFIG_NET_ETHERNET=y
CONFIG_MII=y
CONFIG_AX88796 is not set
CONFIG_HAPPYMEAL is not set
CONFIG_SUNGEM is not set
CONFIG_CASSINI is not set
CONFIG_NET_VENDOR_3COM is not set
CONFIG_DM9000 is not set
CONFIG_NET_TULIP is not set
CONFIG_HP100 is not set
CONFIG_NET_PCI=y
CONFIG_PCNET32=y
CONFIG_PCNET32_NAPI=y

© 2010 Imperas Software Limited www.OVPworld.org Page 104 of 115
.

MIPS32 Malta Linux Platform

CONFIG_AMD8111_ETH is not set
CONFIG_ADAPTEC_STARFIRE is not set
CONFIG_B44 is not set
CONFIG_FORCEDETH is not set
CONFIG_TC35815 is not set
CONFIG_DGRS is not set
CONFIG_EEPRO100=y
CONFIG_E100 is not set
CONFIG_FEALNX is not set
CONFIG_NATSEMI is not set
CONFIG_NE2K_PCI is not set
CONFIG_8139CP is not set
CONFIG_8139TOO is not set
CONFIG_SIS900 is not set
CONFIG_EPIC100 is not set
CONFIG_SUNDANCE is not set
CONFIG_TLAN is not set
CONFIG_VIA_RHINE is not set
CONFIG_SC92031 is not set
CONFIG_NETDEV_1000=y
CONFIG_ACENIC is not set
CONFIG_DL2K is not set
CONFIG_E1000 is not set
CONFIG_NS83820 is not set
CONFIG_HAMACHI is not set
CONFIG_YELLOWFIN is not set
CONFIG_R8169 is not set
CONFIG_SIS190 is not set
CONFIG_SKGE is not set
CONFIG_SKY2 is not set
CONFIG_SK98LIN is not set
CONFIG_VIA_VELOCITY is not set
CONFIG_TIGON3 is not set
CONFIG_BNX2 is not set
CONFIG_QLA3XXX is not set
CONFIG_ATL1 is not set
CONFIG_NETDEV_10000=y
CONFIG_CHELSIO_T1 is not set
CONFIG_CHELSIO_T3 is not set
CONFIG_IXGB is not set
CONFIG_S2IO is not set
CONFIG_MYRI10GE is not set
CONFIG_NETXEN_NIC is not set
CONFIG_MLX4_CORE is not set
CONFIG_TR is not set

Wireless LAN

CONFIG_WLAN_PRE80211 is not set
CONFIG_WLAN_80211 is not set
CONFIG_WAN is not set
CONFIG_FDDI is not set
CONFIG_HIPPI is not set
CONFIG_PPP is not set
CONFIG_SLIP is not set
CONFIG_NET_FC is not set

© 2010 Imperas Software Limited www.OVPworld.org Page 105 of 115
.

MIPS32 Malta Linux Platform

CONFIG_SHAPER is not set
CONFIG_NETCONSOLE is not set
CONFIG_NETPOLL is not set
CONFIG_NET_POLL_CONTROLLER is not set
CONFIG_ISDN is not set
CONFIG_PHONE is not set

Input device support

CONFIG_INPUT=y
CONFIG_INPUT_FF_MEMLESS is not set
CONFIG_INPUT_POLLDEV is not set

Userland interfaces

CONFIG_INPUT_MOUSEDEV=y
CONFIG_INPUT_MOUSEDEV_PSAUX=y
CONFIG_INPUT_MOUSEDEV_SCREEN_X=1024
CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768
CONFIG_INPUT_JOYDEV is not set
CONFIG_INPUT_TSDEV is not set
CONFIG_INPUT_EVDEV is not set
CONFIG_INPUT_EVBUG is not set

Input Device Drivers

CONFIG_INPUT_KEYBOARD=y
CONFIG_KEYBOARD_ATKBD=y
CONFIG_KEYBOARD_SUNKBD is not set
CONFIG_KEYBOARD_LKKBD is not set
CONFIG_KEYBOARD_XTKBD is not set
CONFIG_KEYBOARD_NEWTON is not set
CONFIG_KEYBOARD_STOWAWAY is not set
CONFIG_INPUT_MOUSE=y
CONFIG_MOUSE_PS2=y
CONFIG_MOUSE_PS2_ALPS=y
CONFIG_MOUSE_PS2_LOGIPS2PP=y
CONFIG_MOUSE_PS2_SYNAPTICS=y
CONFIG_MOUSE_PS2_LIFEBOOK=y
CONFIG_MOUSE_PS2_TRACKPOINT=y
CONFIG_MOUSE_PS2_TOUCHKIT is not set
CONFIG_MOUSE_SERIAL is not set
CONFIG_MOUSE_APPLETOUCH is not set
CONFIG_MOUSE_VSXXXAA is not set
CONFIG_INPUT_JOYSTICK is not set
CONFIG_INPUT_TABLET is not set
CONFIG_INPUT_TOUCHSCREEN is not set
CONFIG_INPUT_MISC is not set

Hardware I/O ports

CONFIG_SERIO=y
CONFIG_SERIO_I8042=y

© 2010 Imperas Software Limited www.OVPworld.org Page 106 of 115
.

MIPS32 Malta Linux Platform

CONFIG_SERIO_SERPORT=y
CONFIG_SERIO_PCIPS2 is not set
CONFIG_SERIO_LIBPS2=y
CONFIG_SERIO_RAW=y
CONFIG_GAMEPORT is not set

Character devices

CONFIG_VT=y
CONFIG_VT_CONSOLE=y
CONFIG_HW_CONSOLE=y
CONFIG_VT_HW_CONSOLE_BINDING=y
CONFIG_SERIAL_NONSTANDARD is not set

Serial drivers

CONFIG_SERIAL_8250=y
CONFIG_SERIAL_8250_CONSOLE=y
CONFIG_SERIAL_8250_PCI=y
CONFIG_SERIAL_8250_NR_UARTS=4
CONFIG_SERIAL_8250_RUNTIME_UARTS=4
CONFIG_SERIAL_8250_EXTENDED is not set

Non-8250 serial port support

CONFIG_SERIAL_CORE=y
CONFIG_SERIAL_CORE_CONSOLE=y
CONFIG_SERIAL_JSM is not set
CONFIG_UNIX98_PTYS=y
CONFIG_LEGACY_PTYS=y
CONFIG_LEGACY_PTY_COUNT=256
CONFIG_IPMI_HANDLER is not set
CONFIG_WATCHDOG is not set
CONFIG_HW_RANDOM is not set
CONFIG_RTC=y
CONFIG_R3964 is not set
CONFIG_APPLICOM is not set
CONFIG_DRM is not set
CONFIG_RAW_DRIVER is not set
CONFIG_TCG_TPM is not set
CONFIG_DEVPORT=y
CONFIG_I2C is not set

SPI support

CONFIG_SPI is not set
CONFIG_SPI_MASTER is not set
CONFIG_W1 is not set
CONFIG_POWER_SUPPLY is not set
CONFIG_HWMON is not set

Multifunction device drivers

© 2010 Imperas Software Limited www.OVPworld.org Page 107 of 115
.

MIPS32 Malta Linux Platform

CONFIG_MFD_SM501 is not set

Multimedia devices

CONFIG_VIDEO_DEV is not set
CONFIG_DVB_CORE is not set
CONFIG_DAB=y

Graphics support

CONFIG_BACKLIGHT_LCD_SUPPORT is not set

Display device support

CONFIG_DISPLAY_SUPPORT is not set
CONFIG_VGASTATE is not set
CONFIG_VIDEO_OUTPUT_CONTROL=m
CONFIG_FB=y
CONFIG_FIRMWARE_EDID=y
CONFIG_FB_DDC is not set
CONFIG_FB_CFB_FILLRECT=y
CONFIG_FB_CFB_COPYAREA=y
CONFIG_FB_CFB_IMAGEBLIT=y
CONFIG_FB_SYS_FILLRECT is not set
CONFIG_FB_SYS_COPYAREA is not set
CONFIG_FB_SYS_IMAGEBLIT is not set
CONFIG_FB_SYS_FOPS is not set
CONFIG_FB_DEFERRED_IO=y
CONFIG_FB_SVGALIB is not set
CONFIG_FB_MACMODES is not set
CONFIG_FB_BACKLIGHT is not set
CONFIG_FB_MODE_HELPERS=y
CONFIG_FB_TILEBLITTING is not set

Frame buffer hardware drivers

CONFIG_FB_CIRRUS=y
CONFIG_FB_PM2 is not set
CONFIG_FB_CYBER2000 is not set
CONFIG_FB_ASILIANT is not set
CONFIG_FB_IMSTT is not set
CONFIG_FB_S1D13XXX is not set
CONFIG_FB_NVIDIA is not set
CONFIG_FB_RIVA is not set
CONFIG_FB_MATROX is not set
CONFIG_FB_RADEON is not set
CONFIG_FB_ATY128 is not set
CONFIG_FB_ATY is not set
CONFIG_FB_S3 is not set
CONFIG_FB_SAVAGE is not set
CONFIG_FB_SIS is not set
CONFIG_FB_NEOMAGIC is not set

© 2010 Imperas Software Limited www.OVPworld.org Page 108 of 115
.

MIPS32 Malta Linux Platform

CONFIG_FB_KYRO is not set
CONFIG_FB_3DFX is not set
CONFIG_FB_VOODOO1 is not set
CONFIG_FB_VT8623 is not set
CONFIG_FB_TRIDENT is not set
CONFIG_FB_ARK is not set
CONFIG_FB_PM3 is not set
CONFIG_FB_VIRTUAL is not set

Console display driver support

CONFIG_VGA_CONSOLE is not set
CONFIG_DUMMY_CONSOLE=y
CONFIG_FRAMEBUFFER_CONSOLE=y
CONFIG_FRAMEBUFFER_CONSOLE_DETECT_PRIMARY is not set
CONFIG_FRAMEBUFFER_CONSOLE_ROTATION is not set
CONFIG_FONTS=y
CONFIG_FONT_8x8 is not set
CONFIG_FONT_8x16=y
CONFIG_FONT_6x11 is not set
CONFIG_FONT_7x14 is not set
CONFIG_FONT_PEARL_8x8 is not set
CONFIG_FONT_ACORN_8x8 is not set
CONFIG_FONT_MINI_4x6 is not set
CONFIG_FONT_SUN8x16 is not set
CONFIG_FONT_SUN12x22 is not set
CONFIG_FONT_10x18 is not set
CONFIG_LOGO=y
CONFIG_LOGO_LINUX_MONO=y
CONFIG_LOGO_LINUX_VGA16=y
CONFIG_LOGO_LINUX_CLUT224=y

Sound

CONFIG_SOUND is not set
CONFIG_HID_SUPPORT=y
CONFIG_HID=y
CONFIG_HID_DEBUG is not set
CONFIG_USB_SUPPORT=y
CONFIG_USB_ARCH_HAS_HCD=y
CONFIG_USB_ARCH_HAS_OHCI=y
CONFIG_USB_ARCH_HAS_EHCI=y
CONFIG_USB is not set

NOTE: USB_STORAGE enables SCSI, and 'SCSI disk support'

USB Gadget Support

CONFIG_USB_GADGET is not set
CONFIG_MMC is not set
CONFIG_NEW_LEDS is not set
CONFIG_INFINIBAND is not set

© 2010 Imperas Software Limited www.OVPworld.org Page 109 of 115
.

MIPS32 Malta Linux Platform

CONFIG_RTC_CLASS is not set

DMA Engine support

CONFIG_DMA_ENGINE is not set

DMA Clients

DMA Devices

Userspace I/O

CONFIG_UIO is not set

File systems

CONFIG_EXT2_FS=y
CONFIG_EXT2_FS_XATTR is not set
CONFIG_EXT2_FS_XIP is not set
CONFIG_EXT3_FS=y
CONFIG_EXT3_FS_XATTR=y
CONFIG_EXT3_FS_POSIX_ACL is not set
CONFIG_EXT3_FS_SECURITY is not set
CONFIG_EXT4DEV_FS is not set
CONFIG_JBD=y
CONFIG_JBD_DEBUG is not set
CONFIG_FS_MBCACHE=y
CONFIG_REISERFS_FS=m
CONFIG_REISERFS_CHECK is not set
CONFIG_REISERFS_PROC_INFO=y
CONFIG_REISERFS_FS_XATTR=y
CONFIG_REISERFS_FS_POSIX_ACL=y
CONFIG_REISERFS_FS_SECURITY=y
CONFIG_JFS_FS=m
CONFIG_JFS_POSIX_ACL=y
CONFIG_JFS_SECURITY=y
CONFIG_JFS_DEBUG is not set
CONFIG_JFS_STATISTICS is not set
CONFIG_FS_POSIX_ACL=y
CONFIG_XFS_FS=m
CONFIG_XFS_QUOTA=y
CONFIG_XFS_SECURITY=y
CONFIG_XFS_POSIX_ACL=y
CONFIG_XFS_RT is not set
CONFIG_GFS2_FS is not set
CONFIG_OCFS2_FS is not set
CONFIG_MINIX_FS=m
CONFIG_ROMFS_FS=m
CONFIG_INOTIFY=y
CONFIG_INOTIFY_USER=y

© 2010 Imperas Software Limited www.OVPworld.org Page 110 of 115
.

MIPS32 Malta Linux Platform

CONFIG_QUOTA=y
CONFIG_QFMT_V1 is not set
CONFIG_QFMT_V2=y
CONFIG_QUOTACTL=y
CONFIG_DNOTIFY=y
CONFIG_AUTOFS_FS=y
CONFIG_AUTOFS4_FS is not set
CONFIG_FUSE_FS=m

CD-ROM/DVD Filesystems

CONFIG_ISO9660_FS=m
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_UDF_FS=m
CONFIG_UDF_NLS=y

DOS/FAT/NT Filesystems

CONFIG_FAT_FS=m
CONFIG_MSDOS_FS=m
CONFIG_VFAT_FS=m
CONFIG_FAT_DEFAULT_CODEPAGE=437
CONFIG_FAT_DEFAULT_IOCHARSET="iso8859-1"
CONFIG_NTFS_FS is not set

Pseudo filesystems

CONFIG_PROC_FS=y
CONFIG_PROC_KCORE=y
CONFIG_PROC_SYSCTL=y
CONFIG_SYSFS=y
CONFIG_TMPFS=y
CONFIG_TMPFS_POSIX_ACL is not set
CONFIG_HUGETLB_PAGE is not set
CONFIG_RAMFS=y
CONFIG_CONFIGFS_FS is not set

Miscellaneous filesystems

CONFIG_ADFS_FS is not set
CONFIG_AFFS_FS=m
CONFIG_HFS_FS=m
CONFIG_HFSPLUS_FS=m
CONFIG_BEFS_FS=m
CONFIG_BEFS_DEBUG is not set
CONFIG_BFS_FS=m
CONFIG_EFS_FS=m
CONFIG_JFFS2_FS is not set
CONFIG_CRAMFS=y
CONFIG_VXFS_FS=m
CONFIG_HPFS_FS is not set
CONFIG_QNX4FS_FS is not set

© 2010 Imperas Software Limited www.OVPworld.org Page 111 of 115
.

MIPS32 Malta Linux Platform

CONFIG_SYSV_FS=m
CONFIG_UFS_FS=m
CONFIG_UFS_FS_WRITE is not set
CONFIG_UFS_DEBUG is not set

Network File Systems

CONFIG_NFS_FS=y
CONFIG_NFS_V3=y
CONFIG_NFS_V3_ACL is not set
CONFIG_NFS_V4 is not set
CONFIG_NFS_DIRECTIO is not set
CONFIG_NFSD=y
CONFIG_NFSD_V3=y
CONFIG_NFSD_V3_ACL is not set
CONFIG_NFSD_V4 is not set
CONFIG_NFSD_TCP is not set
CONFIG_ROOT_NFS=y
CONFIG_LOCKD=y
CONFIG_LOCKD_V4=y
CONFIG_EXPORTFS=y
CONFIG_NFS_COMMON=y
CONFIG_SUNRPC=y
CONFIG_SUNRPC_BIND34 is not set
CONFIG_RPCSEC_GSS_KRB5 is not set
CONFIG_RPCSEC_GSS_SPKM3 is not set
CONFIG_SMB_FS is not set
CONFIG_CIFS is not set
CONFIG_NCP_FS is not set
CONFIG_CODA_FS is not set
CONFIG_AFS_FS is not set

Partition Types

CONFIG_PARTITION_ADVANCED is not set
CONFIG_MSDOS_PARTITION=y

Native Language Support

CONFIG_NLS=m
CONFIG_NLS_DEFAULT="iso8859-1"
CONFIG_NLS_CODEPAGE_437=m
CONFIG_NLS_CODEPAGE_737=m
CONFIG_NLS_CODEPAGE_775=m
CONFIG_NLS_CODEPAGE_850=m
CONFIG_NLS_CODEPAGE_852=m
CONFIG_NLS_CODEPAGE_855=m
CONFIG_NLS_CODEPAGE_857=m
CONFIG_NLS_CODEPAGE_860=m
CONFIG_NLS_CODEPAGE_861=m
CONFIG_NLS_CODEPAGE_862=m
CONFIG_NLS_CODEPAGE_863=m
CONFIG_NLS_CODEPAGE_864=m
CONFIG_NLS_CODEPAGE_865=m

© 2010 Imperas Software Limited www.OVPworld.org Page 112 of 115
.

MIPS32 Malta Linux Platform

CONFIG_NLS_CODEPAGE_866=m
CONFIG_NLS_CODEPAGE_869=m
CONFIG_NLS_CODEPAGE_936=m
CONFIG_NLS_CODEPAGE_950=m
CONFIG_NLS_CODEPAGE_932=m
CONFIG_NLS_CODEPAGE_949=m
CONFIG_NLS_CODEPAGE_874=m
CONFIG_NLS_ISO8859_8=m
CONFIG_NLS_CODEPAGE_1250=m
CONFIG_NLS_CODEPAGE_1251=m
CONFIG_NLS_ASCII=m
CONFIG_NLS_ISO8859_1=m
CONFIG_NLS_ISO8859_2=m
CONFIG_NLS_ISO8859_3=m
CONFIG_NLS_ISO8859_4=m
CONFIG_NLS_ISO8859_5=m
CONFIG_NLS_ISO8859_6=m
CONFIG_NLS_ISO8859_7=m
CONFIG_NLS_ISO8859_9=m
CONFIG_NLS_ISO8859_13=m
CONFIG_NLS_ISO8859_14=m
CONFIG_NLS_ISO8859_15=m
CONFIG_NLS_KOI8_R=m
CONFIG_NLS_KOI8_U=m
CONFIG_NLS_UTF8=m

Distributed Lock Manager

CONFIG_DLM is not set

Profiling support

CONFIG_PROFILING is not set

Kernel hacking

CONFIG_TRACE_IRQFLAGS_SUPPORT=y
CONFIG_PRINTK_TIME is not set
CONFIG_ENABLE_MUST_CHECK=y
CONFIG_MAGIC_SYSRQ is not set
CONFIG_UNUSED_SYMBOLS is not set
CONFIG_DEBUG_FS is not set
CONFIG_HEADERS_CHECK is not set
CONFIG_DEBUG_KERNEL is not set
CONFIG_CROSSCOMPILE=y
CONFIG_CMDLINE=""

Security options

CONFIG_KEYS is not set
CONFIG_SECURITY is not set
CONFIG_XOR_BLOCKS=m
CONFIG_ASYNC_CORE=m

© 2010 Imperas Software Limited www.OVPworld.org Page 113 of 115
.

MIPS32 Malta Linux Platform

CONFIG_ASYNC_MEMCPY=m
CONFIG_ASYNC_XOR=m
CONFIG_CRYPTO=y
CONFIG_CRYPTO_ALGAPI=y
CONFIG_CRYPTO_BLKCIPHER=m
CONFIG_CRYPTO_HASH=y
CONFIG_CRYPTO_MANAGER=y
CONFIG_CRYPTO_HMAC=y
CONFIG_CRYPTO_XCBC is not set
CONFIG_CRYPTO_NULL=m
CONFIG_CRYPTO_MD4=m
CONFIG_CRYPTO_MD5=m
CONFIG_CRYPTO_SHA1=m
CONFIG_CRYPTO_SHA256=m
CONFIG_CRYPTO_SHA512=m
CONFIG_CRYPTO_WP512=m
CONFIG_CRYPTO_TGR192=m
CONFIG_CRYPTO_GF128MUL is not set
CONFIG_CRYPTO_ECB=m
CONFIG_CRYPTO_CBC=m
CONFIG_CRYPTO_PCBC=m
CONFIG_CRYPTO_LRW is not set
CONFIG_CRYPTO_CRYPTD is not set
CONFIG_CRYPTO_DES=m
CONFIG_CRYPTO_FCRYPT is not set
CONFIG_CRYPTO_BLOWFISH=m
CONFIG_CRYPTO_TWOFISH=m
CONFIG_CRYPTO_TWOFISH_COMMON=m
CONFIG_CRYPTO_SERPENT=m
CONFIG_CRYPTO_AES=m
CONFIG_CRYPTO_CAST5=m
CONFIG_CRYPTO_CAST6=m
CONFIG_CRYPTO_TEA=m
CONFIG_CRYPTO_ARC4=m
CONFIG_CRYPTO_KHAZAD=m
CONFIG_CRYPTO_ANUBIS=m
CONFIG_CRYPTO_DEFLATE=m
CONFIG_CRYPTO_MICHAEL_MIC=m
CONFIG_CRYPTO_CRC32C=m
CONFIG_CRYPTO_CAMELLIA is not set
CONFIG_CRYPTO_TEST is not set
CONFIG_CRYPTO_HW=y

Library routines

CONFIG_BITREVERSE=y
CONFIG_CRC_CCITT is not set
CONFIG_CRC16=m
CONFIG_CRC_ITU_T is not set
CONFIG_CRC32=y
CONFIG_CRC7 is not set
CONFIG_LIBCRC32C=m
CONFIG_ZLIB_INFLATE=y
CONFIG_ZLIB_DEFLATE=m
CONFIG_TEXTSEARCH=y
CONFIG_TEXTSEARCH_KMP=m

© 2010 Imperas Software Limited www.OVPworld.org Page 114 of 115
.

MIPS32 Malta Linux Platform

CONFIG_TEXTSEARCH_BM=m
CONFIG_TEXTSEARCH_FSM=m
CONFIG_PLIST=y
CONFIG_HAS_IOMEM=y
CONFIG_HAS_IOPORT=y
CONFIG_HAS_DMA=y

© 2010 Imperas Software Limited www.OVPworld.org Page 115 of 115
.

	1 Preface
	1.1 Related Documents

	2 Introduction
	2.1 Platform Definition Files
	2.2 Demo Package Installers

	3 Virtual Platform Command Line and Standard Usage
	4 Board Architecture
	5 Malta Peripheral Models Overview
	5.1 SmartLoaderLinux
	5.2 GT64120 (SysGT6412x)
	5.3 Uart16450
	5.4 PIIX4E (PciPIIX4Ebase)
	5.5 IDE (PciIDE)
	5.6 USB (PciUSB)
	5.7 Power management (PciPM)
	5.8 Interrupt Controller (IntPIIX4E8259)
	5.9 VGA (VgaCLGD54xx)
	5.10 PS2 Controller (Ps2Control)
	5.11 Real Time Clock (RtcMC146818)
	5.12 Malta FPGA (MaltaFPGA)
	5.13 Ethernet Controller (NicAM79C97x)
	5.14 System bus, PCI bus, ISA bus

	6 Booting the pre-built Linux Kernel
	6.1 Introduction
	6.2 Linux Kernel Versions and SMP Support
	6.3 Execution Sequence
	6.3.1 Memory Initialization
	6.3.2 Execution

	6.4 Running the Platform
	6.4.1 Booting from ‘RamDisk’ Initial RAM Disk
	6.4.2 Terminating the Simulation

	7 Installing Full Linux Distribution
	7.1 Simulation Invocation Script
	7.2 Creating an Empty Disk Image
	7.3 Starting the Linux Kernel Boot
	7.4 Installing a Linux Distribution
	7.4.1 Configure Local
	7.4.1.1 Select Language
	7.4.1.2 Select location
	7.4.1.3 Select Keyboard Layout

	7.4.2 Configure the Network
	7.4.2.1 Select Host Name
	7.4.2.2 Select Domain Name

	7.4.3 Download Debian Components
	7.4.3.1 Select Debian Archive Mirror Country
	7.4.3.2 Select Debian Archive Mirror
	7.4.3.3 Choose a Proxy

	7.4.4 Download Installer Components
	7.4.4.1 Continue Without Kernel Modules

	7.4.5 Partition Disk
	7.4.5.1 Start Partitioning
	7.4.5.2 Guided Partitioning of Entire Disk
	7.4.5.3 Create IDE Master
	7.4.5.4 Choose Partitioning
	7.4.5.5 Finish Partitioning of Disk
	7.4.5.6 Write Changes to Disk

	7.4.6 Setup Accounts
	7.4.6.1 Root Password
	7.4.6.2 Add User Account

	7.4.7 Base System Installation
	7.4.7.1 Verifying the Release
	7.4.7.2 Retrieving Packages
	7.4.7.3 Continue Without Kernel
	7.4.7.4 Package Usage Survey
	7.4.7.5 System Selection
	7.4.7.6 No Boot Loader

	7.4.8 Complete Installation

	7.5 Re-Start System
	7.5.1 Boot directly from Disk Image
	7.5.2 Disk Check
	7.5.3 Re-Boot from Disk Image
	7.5.4 Login

	7.6 Stopping the System

	8 Disk Image Files and Initial RAM Disks
	8.1 Introduction
	8.2 Hard Disk Image
	8.2.1 Creation
	8.2.2 Accessing

	8.3 Initial RAM Disk
	8.3.1 Extract Files from an initrd.gz
	8.3.2 Building an initrd.gz
	8.3.3 Modifying the boot sequence
	8.3.4 Example Operations When Running from Initial RAM Disk
	8.3.4.1 Make a writeable directory
	8.3.4.2 Configure the NIC

	9 Re-building the Debian Linux Kernel
	9.1 Introduction
	9.2 Building on a Linux Platform
	9.2.1 Building the Cross-Compiler
	9.2.2 Building the Linux Kernel
	9.2.2.1 Kernel Build Script
	9.2.2.2 Kernel Build Configuration

	9.3 Building on a Windows Platform

	10 Debugging the Linux Kernel
	10.1 Non-Intrusive Instrumentation
	10.2 Attaching the Debugger
	10.2.1 Starting the Platform Simulation

	11 Transferring Files to Guest Linux
	11.1 Introduction
	11.2 Using an FTP Server
	11.2.1 Starting the Simulation
	11.2.2 Adding Additional Linux Components
	11.2.3 Transfer Files

	11.3 Using TFTP
	11.3.1 Starting the Simulation
	11.3.2 Adding Additional Linux Components
	11.3.3 Transfer Files into Guest Operating System

	12 Debugging Linux User Applications
	12.1 Introduction
	12.2 Linux Installation
	12.3 Booting Linux
	12.3.1 Redirecting TCP Port
	12.3.2 Enabling TFTP File Transfer

	12.4 Compiling a User Program
	12.4.1 Cross Compiler ToolChain
	12.4.2 Cross Compiler Make Environment
	12.4.3 Building the Application

	12.5 Adding Additional Linux Components
	12.6 Remote Debug using GDBserver
	12.6.1 Starting GDB Server
	12.6.2 Connecting to GDB Server
	12.6.2.1 Using Eclipse
	12.6.2.2 Using DDD from a Linux Host
	12.6.2.3 Using GDB from local Windows Host

	12.6.3 Debugging Multiple Applications in Parallel

	12.7 Debug using Simulated GDB

	13 Creating an Example Linux Kernel Module
	13.1 Introduction
	13.2 Pre-Requisites
	13.3 Starting the Platform Simulation
	13.4 Example Source
	13.4.1 Included Header Files
	13.4.2 Callback Table and Functions
	13.4.2.1 Table
	13.4.2.2 Device Open
	13.4.2.3 Device Close
	13.4.2.4 Device Read
	13.4.2.5 Device Write

	13.4.3 Device Module Initialize and Exit
	13.4.3.1 Device Initialization
	13.4.3.2 Device Exit
	13.4.3.3 Register Module

	13.5 Building the Device Driver
	13.5.1 Makefiles
	13.5.2 Building

	13.6 Installing the Kernel Module
	13.7 Kernel Module Test Application

	14 Debugging a Statically Linked Linux Kernel Module
	15 Debugging a Dynamically loaded Linux Kernel Module
	15.1 Pre-Requisites
	15.2 Starting the Platform Simulation
	15.2.1 Invoking with VLNV Library
	15.2.2 Invoking from ICM Platform
	15.2.3 Debug Startup

	15.3 Registering Kernel Module with Debugger
	15.4 Debugging the Kernel Module
	15.4.1 Register Kernel Module for Debugging
	15.4.2 Installing the Kernel Module
	15.4.3 Adding Breakpoints
	15.4.4 Source Level Debug

	16 Restrictions and Caveats
	16
	APPENDIX A
	A.1 Platform Command Line Arguments

	APPENDIX B
	B.1 Some Terms Explained

	APPENDIX C
	C.1 MIPS Kernel Configuration File

