Introduction to RISC-V Processor
Verification Methodology With Dynamic
Testbench For Asynchronous Events

Semlsrael Tech Webinar

Larry Lapides
22 February 2022

Agenda

Introduction to Imperas

Why RISC-V?

RISC-V processor design verification (DV) issues

5 levels of RISC-V DV methodology

Key technologies: reference models, verification IP

Summary

Agenda

* Introduction to Imperas

* Why RISC-V?

e RISC-V processor design verification (DV) issues

* 5 levels of RISC-V DV methodology

* Key technologies: reference models, verification IP
* Summary

22-Feb-22

Imperas Founding Story

Imperas founding team has background in Electronic Design Automation (EDA) tools, and FPGA and
processor IP companies

Imperas founding team saw the need for tools and methodology similar to EDA for software debug,
test and analysis, based on software simulation

Just as no SoC is developed without significant simulation, and with verification tools on top of
simulation, we believe the embedded community is evolving so that no embedded system will be
shipped without significant simulation-based verification of software

Key Imperas differentiation: Imperas products have been architected from the tool requirements
down, not from the modeling requirements up

With the introduction and adoption of RISC-V, Imperas has added DV technology and methodology
to the portfolio

Imperas and RISC-V

Q2 2016: Design Automation Conference — Imperas first learns about RISC-V — looks academic and fragmented

Q4 2016: RISC-V Workshop (@ Google) — 350 attendees from serious companies, and the ISA looks to be converging
Q1 2017: Imperas joins the RISC-V Foundation; build first RISC-V processor model

Q3 2017: Imperas starts participating in the Compliance Working Group; builds/donates ISS and tests

Q1 2018: Imperas introduces methodology for adding/optimizing custom instructions for RISC-V cores

Q2 2018: First paying customer using Imperas RISC-V models for software development and design verification (DV)
Q1 2019: First tape out of RISC-V SoC based on using Imperas model as DV reference model

Q2 2019: Imperas starts collaborating with Google on DV flows with instruction stream generator

Q1 2020: Imperas starts working with the OpenHW Group and individual members on DV of Core-V cores

Q1 2021: Imperas presents 2 papers on RISC-V processor DV at the DVCon Silicon Valley conference (with OpenHW,
Nvidia Networking)

Q4 2021: Imperas introduces ImperasDV RISC-V verification product line

Imperas RISC-V Customers and
Partners

The most complex RISC-V processor projects use Imperas

Users Partners
Nagravision RISC-V Intl (compliance, bitmanip, crypto, various events)
Nvidia Networking (Mellanox) OpenHW (verification working group)
EM Micro US CHIPS Alliance (verification working group)
Silicon Labs Google (for open source ISG, & co-author DV papers)
Dolphin Design Valtrix (test generation tools)
lowRISC (Ibex) Andes (processor IP vendor)
RISC-V processor IP vendor SiFive (processor IP vendor)
Top-tier systems company (Al application) Codasip (processor IP vendor)
Top-tier consumer electronics company (AR/VR MIPS (processor IP vendor)
application)

NSITEXE (DENSO subsidiary)

Startup building accelerator based on multiprocessor
RV64

Japanese government projects “TRASIO” and “RVSPF”
Barcelona Supercomputing Center
Numerous universities around the world

© 2022 Imperas Software Ltd. 22-Feb-22

Agenda

* Introduction to Imperas

* Why RISC-V?

e RISC-V processor design verification (DV) issues

* 5 levels of RISC-V DV methodology

* Key technologies: reference models, verification IP
* Summary

22-Feb-22

RISC-V History

RISC-V is an open standard instruction set architecture (ISA) that began in 2010 at
the University of California, Berkeley

Unlike most other ISAs, RISC-V is provided under open source licenses that do not
require fees to use
This is just the architecture, not the processor implementation

Unlike other academic designs which are typically optimized only for simplicity of
exposition, the designers intended that the RISC-V instruction set be usable for

practical computers

While the ISA is a comprehensive RISC architecture, the RISC-V specification allows
for users to add custom features (instructions, CSRs, ...)

The freedom, and not the free, is why RISC-V usage is growing so fast

Freedom Enables Domain
Specific Processing

RISC-V is growing in market segments where x86 (PCs, data centers) and Arm
(mobile) architectures are not dominant

Small microcontrollers for SoC management, replacing proprietary cores
Verticals such as loT and Al/ML

Horizontal markets such as security

The freedom of the open ISA enables users to develop differentiated domain
specific processors

RISC-V users include traditional semiconductor companies, and embedded

systems companies now practicing vertical integration by developing their
own SoCs

Agenda

* Introduction to Imperas

* Why RISC-V?

* RISC-V processor design verification (DV) issues

* 5 levels of RISC-V DV methodology

* Key technologies: reference models, verification IP
* Summary

Page 10 © 2022 Imperas Software Ltd.

22-Feb-22

Challenges in RISC-V
Processor DV

Feature selection and design choices require serious consideration due to
implications of every decision

Experienced processor teams know the costs associated with every feature
Every addition dramatically compounds verification complexity
Costs of simple added feature can be huge —and unknown to inexperienced teams
Adds schedule, resources, quality costs == big risks

As of 2021, no off-the-shelf toolkit/products available for DV of processors
No EDA vendor has ‘RISC-V CPU DV kit’ product
There are in-house proprietary solutions in CPU developers (e.g. Intel, AMD, Arm, ...)
Building your own processor adds schedule, resources, quality costs ... and risks

Current SoC cost is 50% for HW DV (with CPUs bought in as proven IP)

Developing own CPU adds huge DV incremental schedule, resources, quality challenges

Agenda

Introduction to Imperas
Why RISC-V?
RISC-V processor design verification (DV) issues

5 levels of RISC-V DV methodology
1) Hello World
2) Self-checking tests (e.g. Berkeley torture tests pre-2018)
2) Post-simulation trace log file compare
4) Synchronous step-and-compare
5) Asynchronous step-and-compare

Key technologies: reference models, verification IP

Summary

Page 12 © 2022 Imperas Software Ltd. 22-Feb-22

3) Post-Simulation Trace Log File Compare
(Entry Level DV)

Design Verification using Co-Sim with reference model * Process
D Googe Coud * use random generator (ISG) to create tests
* during simulation of ISS write trace log file
g m— * during simulation of RTL write trace log file
O Googe Cloud Open source Stressful Transaction & Instruction Generator (STIG): * at the end of both ru ns, run Iogs throu gh

SystemVerilog design + UVM simulator for RTL
imperas Model and simulation golden reference of RISC-V CPU

compare program to see differences / failures

:t'EHIPS
+* ALLIANCE

@"’“’R'SC 1 opentitan * |ISS: riscvOVPsimPlus includes Trace and
GDB interface

Free ISS: https://www.ovpworld.org/riscvOVPsimPlus

* ISG: riscv-dv from Google Cloud / Chips

Alliance
* Free ISG: https://github.com/google/riscv-dv

Page 13 © 2022 Imperas Software Ltd. 22-Feb-22

5) Asynchronous Step-Compare
(Highest Quality DV Methodology)

Design features needing this methodology include
000 and multi-issue pipeline, multi-hart Example flow:
processor, debug mode, interrupts, ...

Example SystemVerilog components

tracer: Reports instructions for checking and register
writebacks

step_and_compare: Manages the reference model and
checks functionality

interrupt_assert: Properties for interrupt
coverage/checking

debug_assert: Properties for debug coverage/checking

Typically hard, complex, and expensive to get

working 2nd generation CV32E40P OpenHW flow (2H2020)

Challenge is extracting async info from micro- (Imperas model encapsulated in SystemVerilog)
architecture RTL pipeline

© 2022 Imperas Software Ltd. 22-Feb-22

Asynchronous Step-Compare Summary

Instruction by instruction lockstep comparison (includes async events)
Comparison of execution flow, of program data, of programmers and internal state

Immediate comparison
Allows for debug introspection at point of failure — very powerful
Does not waste execution cycles after failure

Includes focus on async events, control flow, and hardware real time effects
Supports multi-hart processors and out-of-order and multi-issue pipelines
Can be hard to develop & set up (depends on RTL DUT tracer features and pipeline understanding)

Can be expensive in terms of time, resources, licenses => costs a lot per bug found

But the bugs are even more expensive if not found early enough ...
Async step-compare is the most comprehensive and most efficient DV approach

Next steps for async step-compare: standards for the test bench; verification IP

© 2022 Imperas Software Ltd. 22-Feb-22

Agenda

* Introduction to Imperas

* Why RISC-V?

e RISC-V processor design verification (DV) issues

* 5 levels of RISC-V DV methodology

* Key technologies: reference models, verification IP
* Summary

Page 16 © 2022 Imperas Software Ltd.

22-Feb-22

RISC-V Processor DV Environment has

5 Major Components

Functional
coverage
measurement

Tracer
&
Control

!

bus/mem i/f

K

int gen mem

DUT subsystem

Page 17

Test bench / harness

control, sequencing,
compare
(SystemVerilog, C or C++)

Tests: Instruction Stream
Generator (ISG) and/or
directed tests

ImperasDV

DV
functions
(verif IP)

RISC-V
Reference
Model

New RISC-V DV standard

© 2022 Imperas Software Ltd.

Key DV technologies

22-Feb-22

RVVI: RISC-V Verification Interface Standard
for Connecting to Test Harness

Tracer
&
Control

bus/mem i/f

int gen mem

DUT subsystem

ImperasDV

DV
functions

RISC-V
Reference
Model

* https://github.com/riscv-verification/RVVI (Public Open Standard)

RVVI-VLG

* Verilog DUT interfaces
* RVVI-VLG state — streaming ‘tracer’ data

* RVVI-VLG nets - implementation dependent (Interrupts, Debug)
* Handles multi-hart, multi-issue, Out-of-Order

* RVVI-API
* Controls DV subsystem and reference model
* RVVI_state - RISC-V Verification Interface - State
* RVVI_control - RISC-V Verification Interface - Control
* RVVI_io - RISC-V Verification Interface - 10 (Interrupts, Debug)
* RVVI _bus - RISC-V Verification Interface - (Data, Instruction Bus)
* Supports SystemVerilog, C, C++ testbenches

Page 18 © 2022 Imperas Software Ltd. 22-Feb-22

RTL DUT with Tracer Interface

The key component —the DUT being tested
* Includes memory model and bus interfaces

* Includes interrupt generator

Tracer
&
Control

Requires a tracer to provide appropriate data to the test bench

Requires control interface so test bench can step through events

bus/mem i/f

Quality of the tracer determines the potential capabilities of the DV
int gen mem environment

DUT subsystem

Page 19 © 2022 Imperas Software Ltd. 22-Feb-22

RISC-V Model Requirements
Not Just for DV:; Also for SW Dev

Model the ISA, including all versions of the ratified spec, and stable unratified extensions
Easily update and configure the model for the next project

User-extendable for custom instructions, registers, ...

Model actual processor IP, e.g. Andes, SiFive, OpenHW, Codasip, MIPS, ...

Well-defined test process including coverage metrics

Interface to other simulators, e.g. SystemVerilog, SystemC, Imperas virtual platform simulators
Interface to software debug tools, e.g. GDB/Eclipse, Imperas MPD

Interface to software analysis tools including access to processor internal state, etc.

Interface to architecture exploration tools including extensibility to timing estimation

Most RISC-V ISSs can meet one or two of these requirements

Imperas models and simulators were built to satisfy these requirements, and matured through
usage on non-RISC-V ISAs over the last 12+ years

OVP Library of RISC-V
Fast Processor Models

Existing Imperas Open Virtual Platforms (OVP) Fast Processor Models of ...

Generic or envelope models of RV32/64 IMAFDCEVBHKP M/S/U privilege modes
Models of processor IP vendors: Andes, Codasip, MIPS, OpenHW, SiFive
Custom models for users building their own RISC-V processors

Custom instructions easily added by user or by Imperas

New instructions are added in side file so as not to perturb the verified model
Imperas tools work with the complete processor model, including the custom instructions

Custom instructions can be analyzed for effectiveness using instruction coverage,
profiling tools

Video demo: http://www.imperas.com/risc-v-custom-instruction-design-and-verification-flow

Models are built using Test Driven Development (TDD) methodology
Tests are built at the same time as features are added
Continuous Integration (Cl) test flow used
> 15,000 directed tests for models + simulator
Additional testing by processor IP vendors to validate models

© 2022 Imperas Software Ltd.

“The Imperas virtual platform solutions for
software development, debug and test,
along with their open-source models, will
help accelerate SoC and embedded
software development for our customers.”

Open Virtual Platforms

22-Feb-22

Imperas is the Reference Model

mperas

Imperas provides full RISC-V Specification envelope model

Industrial quality model /simulator of RISC-V processors for use in compliance,
verification and test development

Complete, fully functional, configurable model / simulator
All 32bit and 64bit features of ratified User and Privilege RISC-V specs
Vector extension, versions 0.7.1, 0.8, 0.9, 1.0
Bit Manipulation extension, versions 0.91, 0.92. 0.93, 1.0.0
Hypervisor version 0.6.1
K-Crypto Scalar version 0.7.1, 1.0.0
Debug versions 0.13.2, 0.14, 1.0.0

http://www.imperas.com/riscv Model source included under Apache 2.0 open source license

Used as reference by :

Mellanox/Nvidia, Seagate, NSITEXE/Denso, Google Cloud, Chips Alliance, lowRISC,
OpenHW Group, Andes, Valtrix, SiFive, Codasip, MIPS, Nagra/Kudelski, Silicon Labs,
RISC-V Compliance Working Group, ...

Imperas is used as RISC-V Golden Reference Model

© 2022 Imperas Software Ltd. 22-Feb-22

Imperas Model Extensibility

Im[@eras Imperas develops and maintains base model
/ Base model implements RISC-V specification in full
Fully user configurable to select which ISA extensions

r Extension: - - i i
User Extensio Fully user configurable to select which version of each ISA extension

. CUStOI:n Updated very regularly as ISA extension specification versions change
Instructions _ o _
& CSRs Fully user configurable for all RISC-V specification options
e.g. implemented optional CSRs, read only or read/write bits etc...
Separate source files and no duplication to Imperas provides methodology to easily extend base model

ensure easy maintenance Templates to add new instructions

Imperas or user can develop the extension Code fragment for adding functionality

User extension source can be proprietar) .
Prop Y 100+ page user guide/reference manual with many examples

Includes example extended processor model

Imperas model is architected for
easy extension & maintenance

© 2022 Imperas Software Ltd. 22-Feb-22

Flow to Add New Custom
Instructions

Characterize C Application

o Simulation

» Trace / Debug
* Function Profiling

Page 24 © 2022 Imperas Software Ltd. 22-Feb-22

.
Simulation of C Application

Mtestcc B

unsigned int processLine(unsigned int res, unsigned int word)(
res = qrl_c(res, word);

* Cross compiled C application targeting s S
RV3ZIM

¢ Character stream encoder, with ChaCha20 et s
encryption algorithm ot sminfveld) ¢

const char *customData = “application/custom.data”;
FILE *fp = fopen(customData, “r*);

* |A simulation UL o rioet

unsigned int word;
unsigned int cnt=0;

* Imperas RISC-V ISS with configurable model of snsigned int iter=;

while (1ter++ < 16) {

RISC-V specification selecting RV32IM WSS o el et ., T

Malts (32-Bit) VA9999999 Open Virtual Platform simulator from w, IHPERRS, con, L
rewind(fp) ; Copylgm (c) 2005-2018 Imperas Softwsre Ltd. Contains Inperss Proprietary Information.

. S e m I h O St I n g 1)‘close(fp) ; V uws‘l,:l";;; ::lf’:r’;l:hﬂ:t?ev:b;g verification and analusis solutions,

prlntf("RES = W08 CpuManagerttult: started: Thu fug 23 11:19:21 2018

L
* Enables bare metal application to very simply R T L —————
host 1/0 : B ™ ™ S e, D, it 0
o
access host I/ return 0, ik e e S
} lﬁo ﬁgzé'"ui ?;eq.mwm Virthdd: Physidd FileSiz MeSiz Flags Align
;\go(g.i;g;gw R-E 1000
Inlo

lni CPU *iss/cpu0’ SYRHS”CS

»runs fast L P

lni Fi ml progren counter 0 100-:

* Over 1 billion instructions a second (standard PC) /WJ“““Z i

* Linux and Windows supported host OS Gt e

ne
tine $ 1.14 seconds
at $ 11.31x faster

Couttanagerfulty finished: Thu Aug 23 11:19:22 2018

© 2022 | Software Ltd.
Page 25 pEres soTHare 22-Feb-22

Function Profile C Application

* Same C application
* |A+E simulation

* Sampled profiling with call stack
analysis

»Shows proportion of time spent in
each application function

»21.35% spent in processLine

Page 26 © 2022 Imperas Software Ltd. 22-Feb-22

Flow to Add New Custom
Instructions o

Characterize C Application Custom Instructions

* Design Instructions

« Simulation
» Add to Application
« Add to Model

» Trace / Debug
* Function Profiling

Page 27 © 2022 Imperas Software Ltd. 22-Feb-22

I
Add Custom Instructions to

u u
p p Icatl OI l // Custom instruction test for Chacha2o

#include <stdio.h>

unsigned int processLine(unsigned int input, unsigned int word){
unsigned int res = 1nput;

* Inline assembly using new instructions z - e

asm __volatile_ (".word 0x008505068\n" ::: *x10"); // OR1
I ! C d asm __volatile_ (".word 0xB0B51508\n" ::: "x10%); // QR2
re p a CI ng CO e asm __volatile__(".word 0x00B52508\n" ::: "x10"); // OR3
asm __volatile_ (".word 8xB0853508\n" ::: "x10"); // QR4
asm __volatile__("“.word 0x00850568\n" ::: *“x10"); /7 OR1 I
° . asm __volatile_ (".word OxB0B51508\n" ::: *"x10%); // QR2
* 4 new iInstructions asm _volatile_(* word 0x00852508\n* ::: *x10*); // OR3
asm __volatile__(".word Ox00B53508\n" ::: "x10"); // QR4
asm __volatile_ ("mv %0 ,x10" : “"=r"(res));
return res;

* Cross compile using standard tool i) e oo it s o e

int mai owlw (c) 2005~ 2019 Inperas Software Ltd, Contains Imperas Proprietary lnfwuuon
consed Software, All Rights Reserved,
th v, [INPERAS .com for multicore debug, verification and analysis solutions,

* Run on IA simulator R

if Info (OR_OF) Target 'iss/cpud’ has cbject File read from "spplication/test custom RISCY32.elf’
Info (OR_PH) Program Headers:
Info (OR_PH) Type Offset VirtAdd Physidd FileSiz MenSiz Flags Rlign
Info (OR_PD) LORD 000000000 000010000 0x00010000 0x00017270 0x00017270 R-E 1000
Info (OR_PD) LORD 0x00017270 000028270 000028270 00000080 000000824 R~ 1000
Info (OR_OF) Target ‘iss/cpul’ has cbject file read from 'application/exception RISCVI2,elf’
Info (OR_PH) Program Headers:
- ° Info (OR_PH) Tupe 0ffset VirtAddr thM FileSiz MenS1z Flags Align
. Info (OR_PD) LORD 000001000 000000000 000000000 0x0000000c 0x0000000c R-E 1000
e n SI r r l u a e u n I r r \ p e r r \ e n e P arning (RISCV_AF) CPU *isa/cpuf” 0100010248 0OUSOS0D custond: [11egal instruction - extansion X (non-standard extensions present) sbsent. or insctive
[] Inf
IM ---

Info (PU '1ss/cpu’ STATISTICS

instruction exception i s

Info Stimulated instructions: 1,340
Info Simulated NIPS 1 run too short for meaningful result
Info

* As the instructions have not yet been b

Info SIMILATION TIME STQH51ICS

added to the simulator model BB s

Info

Cpuanagertulty finished: Thu Aug 23 11:34:51 2018

Page 28 © 2022 Imperas Software Ltd. 22-Feb-22

Add Custom Instructions to
Model and Re-Simulate

static vmidDecodeTableP createDecodeTable(void) (

Use Standard Qpen Vir‘tu'al Platforms vm@ecéaerablep V(ab\e ~vnuf!NeM)e(ooerab\e(mscvgusm_sxrs, RISCV_ELT LASH,- R
(OVP) instruction modeling APIs to pte i | |

vmiProcessorP processor,

add new instructions (and optional e sl SRR She:

instruction,

state) as new extension library i
Easy to extend decode table, add B e oon:mee Una3 g+ ROCimtruction)

U 2 = RS
ff H t b h H I JIT d DECODE_ENTRY(0, CHACHA200R3, *|0 010 0001011]*) : U::;; ::; e RSJEL”\Z:CSZSZE:

erricient nenaviora codae DECODE_ENTRY(0, CHACHA200R4, *|000000G 011.....0001011|"): -

vmiReg reg_rsl = vmimtGetExtReg(processor, &object->rsl);

Optiona”y Can Ca” directl into user’s } return table; vmiReg reg_rs2 = vmimtGetExtReg(processor, &object->rs2);

vmiReg reg_tmp = vmimtGetExtTemp(processor, &object->tmp);

prOVided C fu nCtion Of be aVior o ‘ ‘ vmimtGetR(processor, RISCV_REG_BITS, reg_rsl, object->riscvRegs[rsi]);

o 3 ks 4 A ot vmimtGetR(processor, RISCV_REG BITS, reg_rs2, object->riscvRegs[rs2]);
L icansed Sof tuare, 7 i . i belapa vmimtBinopRRR(32, vmi_XOR, reg tmp, reg_rsl, reg rs2, 0);

Compile and link model extension i P e a3, v oL, e, o)
I i b ra ry » vmimtSetR(processor, RISCV_REG BITS, object->riscvRegs[rd], reg_tmp);

Simulate IA with ISS plus standard
model extended with new library

Instruction count and simulated time ——
have been reduced —

CpuManagertulti finished: Thu Aug 23 11:41:33 2018

© 2022 Imperas Software Ltd. 22-Feb-22

Trace Custom Instructions

* Simulator has many trace features built in

* See new custom instructions in trace —

disassembly

* Can select when/where to turn trace
on/off

* Very efficient tracing

Info

Info

Info
Info

Info (OR_OF) Target
Info (OR_PH) Program Headers
Info (OR_PH) Type
Info (OR_PD) LORD
Info (OR_PD) LORD
Info (OR_OF) Target
Info (OR_PH) Program Headers:
Info (OR_PH) Tupe
Info (OR_PD) LORD
Info 1330: "lss/cpu’,
Info 1331: “fss/cpu0’,
Info 1332: 'iss/cpud

Info 1333

Info 1346: “i

a5 a730c140 ->
‘isa/cp0’,
[iss/cp’,
qu

Info 1340; *1

o',
a0 Ba207451 <>

Info 1341: "jss/cpud’,

o0 1005119 ->

Info 1342: "tss/cpud’,

2eBldd ~>

Info 1343: 'iss/cpu’
ol B5%6548

->

Info 1344: '{ss/cpud’

a0 bad3822a -

Info 1345: "1ss/cpul’,

a0 73438ald ->
a5 a730c140 ->

Info 1347: "1es/cpud’
Info 1348: "tss/cpud’,
Info 1349: “{ss/cpud’,

Cputlanagertulty started: Thu Rug 23 12:02:30 2018

‘tes/cpul’ has cbject file read from ‘application/test_custom RISCVE2,elf’

Offset Virthdd: Physiidds FileSiz MenSi1z Flags Rlign
Ox(0 0x0001 0x00017270 0x00017270 R-E 1000
0x00017270 0x00028270 000028270 00000080 0x00000a24 RN~ 1000

"1es/cpu0” has object file read from 'application/exception RISCVI2 elf’

Offont Virthdd Physfidd FileSiz MenSiz Flags RAlign
000 0 0 o O R-E

000001

0000000000001 0228(processlinesc): Fcad2e23 sw a0,-36(30)
Ox000000000001022¢ (processl ine+10): febd2c23 sw al,-40(s0)
.&W&w(muw“): Fdcd2783 1w #5,-36(s0)
0x0000000000010234(processl. ine+18) : fefd2623 sw #5,-20(s0)
0x0000000000010238(processl ine*lc): fecd2783 lv 5,-20(s0)
0x000000000001023¢ (processl ine+20) : 00078513 mv a0,85

0240(processline+24): fdBA2783 v 85,-40(20)

(pmoen(.lmozs) 00076593 mv

cpud’, 0000000000001 024c(processl ine+30): chachal0qr2 al,a0,al

0250(processline+34): chachal0qr3 a0,40.a1
106511c9

0254(processline*38): chacha20qrd a0,00,al
c2e844db
0x0000000000010258(processLine+*3c): chacha20grl a0,80,al

85506548

’ o.ooooooooowxw 025c(processline+40): chachal0qr2 a0,30,al

bad3E22a

7&:0000000000015‘1 0260(processlinesdd): chachal0qr3 a0,a0,a1
d

0x0000000000010264 (processl ine+48): chachal0grd 20,00,

39Baeef

s3/cpul’ . Ox0000000000010268(processlinesdc): 00050793 mv a5,

39d5a0ef

+ 0x000000000001026c (processl.ine+50): Fefd2623 sw #5,-20(s0)
Ox0000000000010270(processl ine+5d): fecd2783 1w #5,-20(s0)
0000000000001 0274 (processline*58) : 00078513 v 80,85

RES = 84772366

Info

Info

Info CPU 'iss/cpud’ STATISTICS

Info Tupe : riscv (RV32IM)
Info Nominal MIPS 100

Info Final program counter :

Info Simulated instructions: 877 012,570
Info Simulated NIPS : 12090

Info

Info

| BV N

© 2022 Imperas Software Ltd.

22-Feb-22

Debug Custom Instructions

workspace - Debug - /home/araham/imperas/Examples Models/Processor/FeatureUsage/RISCV_CustominstructionFlow/application/test custom.c - Im

File Edit Source Refactor Navigate Search Project Run Imperas Window Help
° I MPD . E I. b d - L =] “'O’Q'lk’{' L > BN D LR~ i - e [E’@
mperas IS ECIIPpSEe based ... N T e e =T
» BN 32 RN - i+ L & v 8 T~ & v
S O u rC e C O e e u g to O = wo Platform Launch [Imperas - Connect to running simulator] Name Type Value
- v iss o input [unsigned Int \ 2222400358
= % cpu0 [RV3I2IM riscv] o9 word unsigned int 2804990272
PS . . = S1ID #£1 [cpu0] RV3I2IM riscv (Suspended : Breakpoint) o res | unsigned int |0
an debug using source line Pocomtinel ot oo £ 1
= main() at test_custom.c:32 0x102e4 3
instruction level —
or INStruction ieve '
f[: test_custom.c 82 ™ customChaCha20. ™riscv32.c [©)_start() at Ox1 o0 = B g Outline »» Programmers View = Disassembly 3 .
// Custom instruction test for Chacha2o] | e fneading han] oy
. 3 #include <stdio. h> |E[‘M‘ < f @ :'
* See new custom instructions doowrdg. fawe w254
unsigned int processLine(unsigned int input, unsigned int word){ 00010240: fd842783 v as,-40(s0)
* unsigned int res = input; 00010244: 00078593 mv al,as
.. o =W __votatite {368 el res 00010248: chacha20qrl a0,a0,al1
asm _volmu ("mv x11, MW" :: "r*(word)): 0001024c: © chacha20qr2 a0,a0,al
a n a ny n eW a I IO n a S a e asm _volatile_ (".word 6x00B50508B\n" ::: " // OR1 BT | SROREGIE 2.0l [l
asm __volatile_(".word 0x00851508\n" ::: // OR2 00010254: chacha20qrd a0,a0,al
. asm __volatile_ (".word 0x00B5250B\n" :: // QR3 00010258: chacha20qrl a0,a0,al
asn _volatile_ (".word 0x00B853508\n" :: // QR4 0001025¢ chacha20qr2 a0,a0,al
reg I S e rS m __volatile_ (" .word 0x00B5050B\n" :: // OR1 00010260 : chacha20qr3 a0,a0,al
au __volatile_ (".word 0x00B51508\n" :: // OR2 00010264 chacha2oqrd a0,a0,a1
asm __volatile__(".word 0x00852508\n" // QR3 vl 00010268: 00050793 m as, a0 ~
— e —— T ———————————
@ Debugger Console 2 ® % i @ - = 0 Oconsol 82 7 Tasks * Proble () Execut ¥ Debug (3 iProf (I Memor = 0O
Platform Launch [Imperas - Connect to running simulator] mpd.exe (7.5) ’ =
signed int), 1, fp)) { Al L 3 2
idebug (cpuwd) > 32 res = processLine(res, word); T No consoles to display at this time.
1debu; (cpu@) > processlane (1nput=2222400358, word=2804990272) at test_custc|
unsigned int res = input;
xdebug (cpuwa) > L
g " " "H;p

© 2022 Imperas Software Ltd. 22-Feb-22

Function Profile Application
Using Custom Instructions

|A simulation + timing annotation +
custom instructions with sampled
profiling

Shows where slowest function is
Now much faster...

Shows benefits of using custom
instructions

processLine was 21.35% now 14.71%

© 2022 Imperas Software Ltd. 22-Feb-22

I
Flow to Add New Custom

Instructions
Develop New Characterize New

Characterize C Application Custom Instructions Instructions in Application

« Simulation Design Instructions « Simulation
« Trace / Debug » Add to Application » Trace / Debug

* Function Profiling » Add to Model Function Profiling

Page 33 © 2022 Imperas Software Ltd. 22-Feb-22

I
Flow to Add New Custom

Instructions
Develop New Characterize New

Characterize C Application Custom Instructions Instructions in Application

« Simulation Design Instructions « Simulation
« Trace / Debug » Add to Application » Trace / Debug
* Function Profiling » Add to Model Function Profiling

\

Optimize & Document model

* Instruction Coverage

» Line Coverage
» Generate model doc pdf

Page 34 © 2022 Imperas Software Ltd. 22-Feb-22

I
Flow to Add New Custom

Instructions
Develop New Characterize New

Characterize C Application Custom Instructions Instructions in Application

« Simulation Design Instructions « Simulation
« Trace / Debug » Add to Application » Trace / Debug
* Function Profiling » Add to Model Function Profiling

* Check RISC-V Compliance *

» Use as reference for RTL Design Verification Optimize & Document model

» Use in Imperas/OVP Platforms, EPKs
* Heterogeneous / Homogeneous

* Instruction Coverage

» Line Coverage
» Generate model doc pdf

e Multi-core, Many-core
 Imperas Multi-Processor Debug, VAP tools
* Port OS, RTOS (Linux, FreeRTOS...)
« Use in many simulation envs (inc. SystemC)
* Deliver to end users

Page 35 © 2022 Imperas Software Ltd. 22-Feb-22

ImperasDV:
RISC-V Verification IP

* Verification IP is needed for ...
* Ease of use

* Scalability

* Extendability

* Performance

* Debug

* Schedule reduction

Page 36 © 2022 Imperas Software Ltd. 22-Feb-22

Page 37

DV Functions

Select model, use variant, configure

Reference model encapsulation
* Enable instruction coverage

Includes DUT reference state storage

Includes synchronization technology
* Can run sync, asyngc, interrupts, debug, multi-hart

Includes comparison technology

* Comparisons are done on instruction retirement; enables DV of
multi-issue and 00O pipeline processors

Can be used in C/C++ or SystemVerilog test bench / harness
* Uses RVVI-API

Very simple to use — the ‘smarts’ are built-in

© 2022 Imperas Software Ltd. 22-Feb-22

ImperasDV

DV functions

Reference
Model

—1| ImperasDV Setup

Verilog Device Under Test Verilog Test Bench ImperasDV
rvviVersionCheck()

vinetinitl sorec * Reference model setup

rvviRefCsrSetVolatile()
e rvviRefPcSet()
rvviRefMemoryWrite

uvifeftenoryirite() = * Configuration of register and memory
= initialization

dutEventStep()

— * Selection of what to compare (depends on DUT

dutBusWrite() rvviDutBusWrite() s

dutCsrSet() rvviDutCsrSet() 1lit1

refNetSet() Main Loop rvviRefNetSet() tracer Capabllltles)

dutGprSet() rvviDutGprSet()
dutRetire() / rvviDutRetire() / * PC, GPR, CSR, FPR, VR, decode, net, hart ...
dutException() rvviDutException() S Comparator

rvviRefEventStep()

* Select capabilities:

4 P2 rvviRefGprGet()
rvviRefPcGet ()
e * sync-step-compare or async-step-compare
« rvviRefMemoryRead()
Compare

rvviRefGprsCompare

rvviRefGprsCompareWritten() S

* Trace and logging set up

rvviRefPcCompare()
e * Selection of built-in instruction coverage
— g
dutShutdown() Terminal State (Pass) rvviRefShutdown()

/ Mismatch (Fail)

* Choice of DV control options

Page 38 © 2022 Imperas Software Ltd. 22-Feb-22

Summary

RISC-V processor developers need to do comprehensive verification
of the RTL implementation

Processor DV methodology has been evolved by Imperas, together
with customers and partners

Asynchronous step-compare methodology provides the most
comprehensive, most efficient RISC-V DV flow

Key technologies include the Imperas OVP reference model and the
ImperasDV verification IP

Thank you!

LarryL@imperas.com

Page 40 © 2022 Imperas Software Ltd. 22-Feb-22

